Exposure to commonly used anesthetic agents causes widespread neuronal degeneration in the developing mammalian brain and has been shown to impair neurodevelopment in a variety of newborn vertebrate animal species. Although retrospective studies have suggested an association between anesthesia exposure in childhood and subsequent neurodevelopmental abnormalities, a causal relationship in humans has yet to be demonstrated. Unfortunately, translation of findings from bench to bedside is limited by several factors and histologic assessment in healthy children following exposure to anesthesia is not possible. Therefore, to prove that anesthesia-induced neurotoxicity occurs in humans, alternative approaches are necessary. Here we present the summary of a focus group discussion regarding the utility of biomarkers in translational studies of anesthetic neurotoxicity as part of The 2016 Pediatric Anesthesia NeuroDevelopmental Assessment (PANDA) Symposium at Columbia University Medical Center. The experts agreed that defining intermediate phenotypes using advanced neuroimaging as a biomarker is a highly feasible and reasonable modality to provide new insights into the deleterious effects of anesthetic exposure in the developing human brain and could illuminate a viable investigative path forward. Ultimately, well-defined intermediate phenotypes may allow us to fully understand the neurodevelopmental impact of anesthesia-induced neurotoxicity and permit us to develop the safest and most effective anesthetic strategies for the infants and children we care for.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5326616PMC
http://dx.doi.org/10.1097/ANA.0000000000000351DOI Listing

Publication Analysis

Top Keywords

children exposure
8
anesthesia-induced neurotoxicity
8
intermediate phenotypes
8
biomarkers genetics
4
genetics epigenetic
4
epigenetic studies
4
studies explore
4
explore neurocognitive
4
neurocognitive effects
4
anesthesia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!