Context: The role of hypericin-mediated photodynamic antimicrobial properties on pathogenic fungi and photodynamic therapy for human cancer cells is known. Antifungal properties of Hypericum perforatum L. (Hypericaceae) and Fagopyrum esculentum Moench. (Polygonaceae) extracts were also studied. The different polarities of solvents can cause complication in the identification of antifungal effects of separate biologically active compounds. In recent experimental work, we compared antifungal properties of purified hypericin, hypericin tetrasulphonic acid (hypericin + S) and fagopyrin, which is analogue of hypericin.

Objective: The antifungal properties of aromatic polyketide derivatives such as hypericin, hypericin + S and fagopyrin on the selected pathogenic fungi and spoilage yeasts have been studied.

Materials And Methods: The antifungal properties of hypericin, hypericin + S and fagopyrin were determined using the broth microdilution method against a set of pathogenic fungi and spoilage yeasts including: Microsporum canis, Trichophyton rubrum, Fusarium oxysporum, Exophiala dermatitidis, Candida albicans, Kluyveromyces marxianus, Pichia fermentans and Saccharomyces cerevisiae. The tested concentrations of hypericin, hypericin + S and fagopyrin ranged from 750 to 0.011 μg/mL and MIC values were evaluated after 48 h incubation at 30 °C.

Results: The results confirm different antifungal properties of hypericin, hypericin + S and fagopyrin on the selected pathogenic fungi and spoilage yeasts. For pathogenic fungi, the minimum inhibitory concentrations of hypericin ranged 0.18-46.9 μg/mL, hypericin + S 0.18-750 μg/mL and fagopyrin 11.7-46.9 μg/mL. For spoilage yeasts, the MICs of hypericin and hypericin + S ranged 0.18-46.9 and 0.011-0.73 μg/mL, respectively.

Discussion And Conclusion: The results obtained herein indicate that various chemical structures of hypericin, hypericin + S and fagopyrin can develop different antifungal properties.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13880209.2016.1211716DOI Listing

Publication Analysis

Top Keywords

antifungal properties
28
pathogenic fungi
24
hypericin + s fagopyrin
24
hypericin hypericin + s
24
spoilage yeasts
20
fungi spoilage
16
properties hypericin
12
hypericin
11
antifungal
8
hypericin hypericin
8

Similar Publications

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Background And Aim: In dental clinics, disinfecting alginate impression materials is a critical practice to prevent cross-infection. Recently, zinc oxide nanoparticles (ZnO NPs) have been explored for their potential antimicrobial properties, making them promising additives for dental materials. This study investigates the antimicrobial activity of ZnO NPs incorporated into alginate impression materials and assesses the impact on material flow.

View Article and Find Full Text PDF

Biogenic nanoparticles as a promising drug delivery system.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt.

Nanotechnology has significantly influenced the worldwide medical services sector during the past few decades. Biological collection approaches for nanoparticles are economical, non-toxic, and ecologically benign. This review provides up-to-date information on nanoparticle production processes and biological sources, including algae, plants, bacteria, fungus, actinomycetes, and yeast.

View Article and Find Full Text PDF

Background: Adjusting thickening agent proportions in nanoemulsion gel (NG) balances its transdermal and topical delivery properties, making it more effective for dermatophytosis treatment.

Methods: Carbomer 940 and α-pinene were used as model thickening agent and antifungal, respectively. A series of α-pinene NGs (αNG1, αNG2, αNG3) containing 0.

View Article and Find Full Text PDF

is the most common cause of life-threatening fungal infection in the developed world but remains a therapeutic challenge. Protein kinases have been rewarding drug targets across diverse indications but remain untapped for antifungal development. Previously, screening kinase inhibitors against revealed a 2,3-aryl-pyrazolopyridine, GW461484A (GW), which targets casein kinase 1 (CK1) family member Yck2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!