We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.117.075501 | DOI Listing |
Open Res Eur
January 2025
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, 91125, USA.
The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
Lithium dendrites are widely acknowledged as the main culprit of the degradation of performance in various Li-based batteries. Studying the mechanism of lithium dendrite formation is challenging because of the high reactivity of lithium metal. In this work, a phase field model and in situ observation experiments were used to study the growth kinetics and morphologies of lithium dendrites in terms of anisotropy, temperature, and potential difference.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia.
Liquid-liquid phase transitions play a pivotal role in various scientific disciplines and technological applications, ranging from biology to materials science and geophysics. Understanding the behavior of materials undergoing these transitions provides valuable insights into complex systems and their dynamic properties. This review explores the implications of liquid-liquid phase transitions, particularly focusing on the transition between low-density liquid (LDL) and high-density liquid (HDL) phases.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Frankfurt Institute for Advanced Studies, Frankfurt am Main 60438, Germany.
The assembly of proteins in membranes plays a key role in many crucial cellular pathways. Despite their importance, characterizing transmembrane assembly remains challenging for experiments and simulations. Equilibrium molecular dynamics simulations do not cover the time scales required to sample the typical transmembrane assembly.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Hydraulic and Sanitary Engineering, Poznan University of Life Sciences, Piatkowska St. 94A, 60-649, Poznan, Poland. Electronic address:
The paper presents a proposal to modify a field method of testing the condition of activated sludge using a 30-min volume of sludge (settling test). To verify the validity of the modified method of testing the condition of activated sludge, field tests were performed in two onsite wastewater treatment plants. In these plants, the reaction chambers were fed by gravity from the primary sedimentation tank throughout the day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!