Massive Photons: An Infrared Regularization Scheme for Lattice QCD+QED.

Phys Rev Lett

Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA.

Published: August 2016

Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body computations with long-range Coulomb interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.072002DOI Listing

Publication Analysis

Top Keywords

massive photons
4
photons infrared
4
infrared regularization
4
regularization scheme
4
scheme lattice
4
lattice qcd+qed
4
qcd+qed standard
4
standard methods
4
methods including
4
including electromagnetic
4

Similar Publications

Artifact Reduction in Interventional Devices Using Virtual Monoenergetic Images and Iterative Metal Artifact Reduction on Photon-Counting Detector CT.

Invest Radiol

January 2025

From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (Y.C.L., N.M., P.A.K., A.I., T.D., J.A.L., D.K.); and Siemens Healthineers AG, Erlangen, Germany (S.F., V.H., B.S.).

Objectives: The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.

Materials And Methods: Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios.

View Article and Find Full Text PDF

Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury.

eNeuro

December 2024

Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.

It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury.

View Article and Find Full Text PDF

Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules.

Acta Crystallogr D Struct Biol

January 2025

SR Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.

Recent advances in low-emittance synchrotron X-ray technology and highly sensitive photon-counting detectors have revolutionized protein micro-crystallography in structural biology. These developments and improvements to sample-exchange robots and beamline control have paved the way for automated and efficient unattended data collection. This study analyzed protein crystal structures such as type 2 angiotensin II receptor, CNNM/CorC membrane proteins and polyhedral protein crystals using small-wedge synchrotron crystallography (SWSX), which dramatically improves measurement efficiency through automated measurement.

View Article and Find Full Text PDF

Fracture Dynamics in Silicon Anode Solid-State Batteries.

ACS Energy Lett

December 2024

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Solid-state batteries (SSBs) with silicon anodes could enable improved safety and energy density compared to lithium-ion batteries. However, degradation arising from the massive volumetric changes of silicon anodes during cycling is not well understood in solid-state systems. Here, we use X-ray computed microtomography to reveal micro- to macro-scale chemo-mechanical degradation processes of silicon anodes in SSBs.

View Article and Find Full Text PDF

Knowledge mining of brain connectivity in massive literature based on transfer learning.

Bioinformatics

November 2024

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

Motivation: Neuroscientists have long endeavored to map brain connectivity, yet the intricate nature of brain networks often leads them to concentrate on specific regions, hindering efforts to unveil a comprehensive connectivity map. Recent advancements in imaging and text mining techniques have enabled the accumulation of a vast body of literature containing valuable insights into brain connectivity, facilitating the extraction of whole-brain connectivity relations from this corpus. However, the diverse representations of brain region names and connectivity relations pose a challenge for conventional machine learning methods and dictionary-based approaches in identifying all instances accurately.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!