Vector-Boson Fusion Higgs Production at Three Loops in QCD.

Phys Rev Lett

Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, University of Oxford, Oxford OX1 3NP, United Kingdom.

Published: August 2016

We calculate the next-to-next-to-next-to-leading-order (N^{3}LO) QCD corrections to inclusive vector-boson fusion Higgs production at proton colliders, in the limit in which there is no color exchange between the hadronic systems associated with the two colliding protons. We also provide differential cross sections for the Higgs transverse momentum and rapidity distributions. We find that the corrections are at the 1‰-2‰ level, well within the scale uncertainty of the next-to-next-to-leading-order calculation. The associated scale uncertainty of the N^{3}LO calculation is typically found to be below the 2‰ level. We also consider theoretical uncertainties due to missing higher order parton distribution functions, and provide an estimate of their importance.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.072001DOI Listing

Publication Analysis

Top Keywords

vector-boson fusion
8
fusion higgs
8
higgs production
8
scale uncertainty
8
production three
4
three loops
4
loops qcd
4
qcd calculate
4
calculate next-to-next-to-next-to-leading-order
4
next-to-next-to-next-to-leading-order n^{3}lo
4

Similar Publications

Article Synopsis
  • The study investigates the associated production of Higgs and W bosons, focusing on how the relative signs of the Higgs couplings to W and Z bosons impact the process.
  • Two specific searches were conducted using large amounts of collision data from the LHC to analyze different coupling scenarios: one for opposite-sign couplings and another for same-sign (standard model-like) couplings.
  • The results significantly exclude the opposite-sign coupling hypothesis and set a strict upper limit on the production rate of this process compared to standard model predictions.
View Article and Find Full Text PDF

A study of the anomalous couplings of the Higgs boson to vector bosons, including -violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 . The different-flavor dilepton final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson.

View Article and Find Full Text PDF

A test of CP invariance in Higgs boson production via vector-boson fusion has been performed in the H→γγ channel using 139  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV collected by the ATLAS detector at the LHC. The optimal observable method is used to probe the CP structure of interactions between the Higgs boson and electroweak gauge bosons, as described by an effective field theory. No sign of CP violation is observed in the data.

View Article and Find Full Text PDF

A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb^{-1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ_{2V}, excluding κ_{2V}=0 for the first time, with a significance of 6.

View Article and Find Full Text PDF

Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!