Periodontium bestows vision!!

J Indian Soc Periodontol

Department of Periodontics, Babu Banarasi Das College of Dental Sciences, Lucknow, Uttar Pradesh, India.

Published: August 2016

The role of periodontium in supporting the tooth structures is well-known. However, less is known about its contribution to the field of ophthalmology. Corneal diseases are among major causes of blindness affecting millions of people worldwide, for which synthetic keratoprosthesis was considered the last resort to restore vision. Yet, these synthetic keratoprosthesis suffered from serious limitations, especially the foreign body reactions invoked by them resulting in extrusion of the whole prosthesis from the eye. To overcome these shortcomings, an autologous osteo-odonto keratoprosthesis utilizing intraoral entities was introduced that could positively restore vision even in cases of severely damaged eyes. The successful functioning of this prosthesis, however, predominantly depended on the presence of a healthy periodontium for grafting. Therefore, the following short communication aims to acknowledge this lesser-known role of the periodontium and other oral structures in bestowing vision to the blind patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976560PMC
http://dx.doi.org/10.4103/0972-124X.170853DOI Listing

Publication Analysis

Top Keywords

role periodontium
8
synthetic keratoprosthesis
8
restore vision
8
periodontium
4
periodontium bestows
4
bestows vision!!
4
vision!! role
4
periodontium supporting
4
supporting tooth
4
tooth structures
4

Similar Publications

The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.

View Article and Find Full Text PDF

Effects of periodontal disease on the proteomic profile of the periodontal ligament.

J Proteomics

January 2025

Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil; Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.

Periodontal disease affects over 1 billion people globally. This study investigated how periodontitis affects the protein profile of the periodontal ligament (PDL) in rats. Eight Holtzman rats were divided into the control and experimental periodontitis groups.

View Article and Find Full Text PDF

The Role of Gli1 Mesenchymal Stem Cells in Craniofacial Development and Disease Treatment.

J Oral Rehabil

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.

Objective: This review summarises the role of Gli1 (Glioma-associated oncogene homologue 1) mesenchymal stem cells in craniofacial growth and development or tissue repair, and their application in the treatment of some diseases.

Design: The search for this narrative review was conducted in PubMed and Web of Science using relevant keywords, including checking reference lists of journal articles by hand searching.

Results: Gli1 mesenchymal stem cells play an important role in the growth and development of the skull, tooth, periodontium and mandibular condyle.

View Article and Find Full Text PDF

Survival of periodontal ligament myofibroblasts after short-term mechanical strain in rats and in vitro: Could myofibroblasts contribute to orthodontic relapse?

Arch Oral Biol

January 2025

Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud university medical center, Philips van Leydenlaan 25, Nijmegen 6525 EX, the Netherlands. Electronic address:

Objectives: To investigate in vivo whether myofibroblasts formed in the PDL after exposure to short-term high experimental orthodontic forces in rats survive. To study in vitro whether human PDL fibroblasts can differentiate into myofibroblasts and survive when chemical or mechanical stimuli are removed.

Design: Nine 6-week-old male Wistar rats were used in this experiment.

View Article and Find Full Text PDF

: Vascular endothelial growth factor (VEGF) is a protein which stimulates the formation of new blood vessels, playing a crucial role in processes such as wound healing and tumor growth. : This study investigated the effects of VEGF on cell viability and osteogenic differentiation in mesenchymal stem cell (MSC) spheroids. Stem cell spheroids were fabricated using concave microwells and cultured with VEGF at concentrations of 0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!