Vitamin A homeostasis is critical to normal cellular function. Retinol-binding protein (RBP) is the sole specific carrier in the bloodstream for hydrophobic retinol, the main form in which vitamin A is transported. The integral membrane receptor STRA6 mediates cellular uptake of vitamin A by recognizing RBP-retinol to trigger release and internalization of retinol. We present the structure of zebrafish STRA6 determined to 3.9-angstrom resolution by single-particle cryo-electron microscopy. STRA6 has one intramembrane and nine transmembrane helices in an intricate dimeric assembly. Unexpectedly, calmodulin is bound tightly to STRA6 in a noncanonical arrangement. Residues involved with RBP binding map to an archlike structure that covers a deep lipophilic cleft. This cleft is open to the membrane, suggesting a possible mode for internalization of retinol through direct diffusion into the lipid bilayer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5114850 | PMC |
http://dx.doi.org/10.1126/science.aad8266 | DOI Listing |
Background: Identifying individuals' levels of tau PET pathology could prove to be beneficial in clinical settings, given that emerging therapies aimed reducing Aβ seem to be most effective in these individuals. Here, we present the cases of four patients who visited the memory clinic at the University of Pittsburgh Medical Center between June and December 2023 and underwent both Aβ and tau-PET scans.
Method: These individuals had standard clinical and cognitive outcomes, typical blood tests order in patients with memory impairment, MRI, and, as part of the HEAD study, PET PIB Aβ and two tau PET tracers (MK6240 and Flortaucipir).
Sci Rep
January 2025
Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
Background: Type 2 Diabetes Mellitus (T2DM) is closely associated with the development of vascular damage in the heart. In this study, the researchers aimed to determine whether Aerobic Training (AT) and Vitamin D supplementation (Vit D) could alleviate heart complications and vascular damage caused by diabetes. The effects of an eight-week AT program and Vit D on the expression of miR-1, IGF-1 genes, and VEGF-B in the cardiomyocytes of rats with T2DM.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Department of International Agricultural Technology & Institute of Green Bioscience and Technology, Seoul National University, Pyeongchang, Republic of Korea. Electronic address:
The tumor virus A receptor (TVA), a member of the low-density lipoprotein receptor (LDLR) family, serves as an entry receptor for Avian Leukosis Virus (ALV) subgroups A and K, as well as a receptor for vitamin B bound to transcobalamin. Naturally occurring genetic variants in the TVA gene determine susceptibility or resistance to ALV-A and -K, but the effects of these mutated TVA on vitamin B uptake have not been investigated systemically. We found four TVA variants comprising the wild type (TVA), a single nucleotide polymorphism variant (TVA), and two partial deletions in the splicing branch point region (TVA).
View Article and Find Full Text PDFAnticancer Res
January 2025
Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, U.S.A.;
Background/aim: Obese individuals often exhibit vitamin D deficiency, potentially due to sequestration in fat cells. Little is known about how vitamin D enters adipocytes and associates with the intracellular lipid droplet.
Materials And Methods: Newly differentiated human and mouse (3T3-L1) adipocytes and primary mouse adipocytes were treated with vitamin D covalently linked to green fluorescent BODIPY (VitD-B) or Green BODIPY (GB) as control.
Nat Commun
December 2024
ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!