Autotaxin-Lysophosphatidic Acid Axis Acts Downstream of Apoprotein B Lipoproteins in Endothelial Cells.

Arterioscler Thromb Vasc Biol

From the Department of Biological Regulation (L.G.-B., H.T., Y.E., K.Y.), Department of Biological Services (E.F., A.B.), Department of Veterinary Services (R.H., G.A.), and Department of Molecular Genetics (T.B.), Weizmann Institute of Science, Rehovot, Israel; and Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel (R.B.-H., S.E).

Published: October 2016

Objective: As they travel through the blood stream, plasma lipoproteins interact continuously with endothelial cells (ECs). Although the focus of research has mostly been guided by the importance of lipoproteins as risk factors for atherosclerosis, thrombosis, and other cardiovascular diseases, little is known about the mechanisms linking lipoproteins and angiogenesis under physiological conditions, and particularly, during embryonic development. In this work, we performed global mRNA expression profiling of endothelial cells from hypo-, and hyperlipidemic zebrafish embryos with the goal of uncovering novel mediators of lipoprotein signaling in the endothelium.

Approach And Results: Microarray analysis was conducted on fluorescence-activated cell sorting-isolated fli1:EGFP(+) ECs from normal, hypo-, and hyperlipidemic zebrafish embryos. We found that opposed levels of apoprotein B lipoproteins result in differential expression of the secreted enzyme autotaxin in ECs, which in turn affects EC sprouting and angiogenesis. We further demonstrate that the effects of autotaxin in vivo are mediated by lysophosphatidic acid (LPA)-a well-known autotaxin activity product-and that LPA and LPA receptors participate as well in the response of ECs to lipoprotein levels.

Conclusions: Our findings provide the first in vivo gene expression profiling of ECs facing different levels of plasma apoprotein B lipoproteins and uncover a novel lipoprotein-autotaxin-LPA axis as regulator of EC behavior. These results highlight new roles for lipoproteins as signaling molecules, which are independent of their canonical function as cholesterol transporters.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.116.308119DOI Listing

Publication Analysis

Top Keywords

apoprotein lipoproteins
12
endothelial cells
12
expression profiling
8
hypo- hyperlipidemic
8
hyperlipidemic zebrafish
8
zebrafish embryos
8
lipoproteins
7
ecs
5
autotaxin-lysophosphatidic acid
4
acid axis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!