The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes.

Ann Bot

Landscape and Biodiversity Research Group, Department of Environmental and Geographical Sciences, University of Northampton, Avenue Campus, St George's Avenue, Northampton NN2 6JD, UK.

Published: September 2016

Background And Aims: Modularity is a ubiquitous and important structural property of ecological networks which describes the relative strengths of sets of interacting species and gives insights into the dynamics of ecological communities. However, this has rarely been studied in species-rich, tropical plant-pollinator networks. Working in a biodiversity hotspot in the Peruvian Andes we assessed the structure of quantitative plant-pollinator networks in nine valleys, quantifying modularity among networks, defining the topological roles of species and the influence of floral traits on specialization.

Methods: A total of 90 transects were surveyed for plants and pollinators at different altitudes and across different life zones. Quantitative modularity (QuanBiMo) was used to detect modularity and six indices were used to quantify specialization.

Key Results: All networks were highly structured, moderately specialized and significantly modular regardless of size. The strongest hubs were Baccharis plants, Apis mellifera, Bombus funebris and Diptera spp., which were the most ubiquitous and abundant species with the longest phenologies. Species strength showed a strong association with the modular structure of plant-pollinator networks. Hubs and connectors were the most centralized participants in the networks and were ranked highest (high generalization) when quantifying specialization with most indices. However, complementary specialization d' quantified hubs and connectors as moderately specialized. Specialization and topological roles of species were remarkably constant across some sites, but highly variable in others. Networks were dominated by ecologically and functionally generalist plant species with open access flowers which are closely related taxonomically with similar morphology and rewards. Plants associated with hummingbirds had the highest level of complementary specialization and exclusivity in modules (functional specialists) and the longest corollas.

Conclusions: We have demonstrated that the topology of networks in this tropical montane environment was non-random and highly organized. Our findings underline that specialization indices convey different concepts of specialization and hence quantify different aspects, and that measuring specialization requires careful consideration of what defines a specialist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998976PMC
http://dx.doi.org/10.1093/aob/mcw114DOI Listing

Publication Analysis

Top Keywords

plant-pollinator networks
16
networks
10
influence floral
8
floral traits
8
specialization
8
biodiversity hotspot
8
hotspot peruvian
8
peruvian andes
8
topological roles
8
roles species
8

Similar Publications

The Effects of Disturbance on Plant-Pollinator Interactions in the Native Forests of an Oceanic Island (Terceira, Azores).

Insects

December 2024

LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland.

The native biodiversity of oceanic islands is threatened by human-driven disturbance and by the growing number of species introductions which often interfere with natural ecological processes. Here, we aim to evaluate the effect of anthropogenic disturbance on plant-pollinator interactions in the native forest communities of an oceanic island (Terceira, Azores, Portugal). We found that native species predominated in preserved sites compared to disturbed ones and that the extant plant-pollinator interactions were mostly dominated by generalist species.

View Article and Find Full Text PDF

Ecological patterns of plant-pollinator interactions in the Palouse Prairie.

Environ Entomol

January 2025

Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.

Insect pollinators are essential for natural ecosystems. Without pollination, native plants are less likely to be able to persist. As natural ecosystems have become more fragmented and degraded, interest in their restoration and preservation has increased.

View Article and Find Full Text PDF

Agricultural intensification has led to significant declines in beneficial insect populations, such as pollinators and natural enemies, along with their ecosystem services. The installation of perennial flower margins in farmland is a popular agri-environmental scheme to mitigate these losses, promoting biodiversity, pollination, and pest control. However, outcomes can vary widely, and recent insights into flower margins in an agricultural context suggest that management could be an important contributor to this variation.

View Article and Find Full Text PDF

Background: The spectacular decline in pollinators and their prominent role in pollination of natural and cultivated plants has stimulated research on pollinating insects. Over the last ten years, much ecological research has been carried out on bees, often generating a large volume of specimens and increasing the importance of entomological collections. Here, we present the bee collection of the IMBE laboratory (Marseille, France) after ten years of study of plant-pollinator networks.

View Article and Find Full Text PDF

Global change aggravates drought, with consequences for plant reproduction.

Ann Bot

December 2024

Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, PA 66055-090,  Brazil.

Background: The frequency and intensity of droughts are expected to increase under global change, driven by anthropogenic climate change and water diversion. Precipitation is expected to become more episodic under climate change, with longer and warmer dry spells, although some areas might become wetter. Diversion of freshwater from lakes and rivers and groundwater pumping for irrigation of agricultural fields are lowering water availability to wild plant populations, increasing the frequency and intensity of drought.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!