Innate immune responses in host plants begin with the recognition of pathogen-specific nonself molecules and terminate with the secretion of immune molecules. In the dicotyledonous model plant, Arabidopsis thaliana, two distinct secretory pathways required for disease resistance to powdery mildew fungi have been identified so far. One is an exocytic pathway consisting of PEN1, SNAP33 and VAMP721/722 SNARE proteins, but the other is an efflux-mediated one composed of PEN2 atypical myrosinase and PEN3 ABC transporter. Based on the conservation of the mechanically same exocytic pathway in the monocotyledonous plant barely, the former is regarded as an ancient secretory pathway, whereas the latter is considered as a newly evolved one in the Brassicaceae family including Arabidopsis. We recently identified synaptotagmin 1 as an additional regulator of these two secretory pathways. With current results, we discuss how these two secretory pathways contribute to Arabidopsis immunity depending on fungal adaptedness to Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5257168 | PMC |
http://dx.doi.org/10.1080/15592324.2016.1226456 | DOI Listing |
Exp Physiol
January 2025
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
In health, the liver is a metabolically flexible organ that plays a key role in regulating systemic lipid and glucose concentrations. There is a constant flux of fatty acids (FAs) to the liver from multiple sources, including adipose tissue, dietary, endogenously synthesized from non-lipid precursors, intrahepatic lipid droplets and recycling of triglyceride-rich remnants. Within the liver, FAs are used for triglyceride synthesis, which can be oxidized, stored or secreted in very low-density lipoproteins into the systemic circulation.
View Article and Find Full Text PDFCancers (Basel)
January 2025
School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India.
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFCells
January 2025
Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
Metastasizing cancer cells surreptitiously can adapt to metabolic activity during their invasion. By initiating their communications for invasion, cancer cells can reprogram their cellular activities to initiate their proliferation and migration and uniquely counteract metabolic stress during their progression. During this reprogramming process, cancer cells' metabolism and other cellular activities are integrated and mutually regulated by tunneling nanotube communications to alter their specific metabolic functional drivers of tumor growth and progression.
View Article and Find Full Text PDFMol Breed
February 2025
National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.
Plant diseases caused by pathogens and pests lead to crop losses, posing a threat to global food security. The secretory pathway is an integral component of plant defense. The exocyst complex regulates the final step of the secretory pathway and is thus essential for secretory defense.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!