The development of novel enzymes for biocatalytic processes requires knowledge on substrate profile and selectivity; this can be derived from databases and from publications. Often, these sources lack time-course data for the substrate or product, and an unambiguous link between experiment and enzyme sequence. The lack of integrated, original data hampers the comprehensive analysis of enzyme kinetics and the evaluation of sequence-function relationships. In order to accelerate enzyme engineering, BioCatNet integrates protein sequence, protein structure, and experimental data for a given enzyme family. BioCatNet explicitly assigns the enzyme sequence to the experimental data, which consists of information on reaction conditions and time-course data. BioCatNet facilitates the consistent documentation of reaction conditions, the archiving of time-course data, and the efficient exchange of experimental data among collaborators. Data integration is demonstrated for three case studies by using the TEED (Thiamine diphosphate-dependent Enzymes Engineering Database).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201600462 | DOI Listing |
Biochim Biophys Acta Mol Cell Biol Lipids
January 2025
Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
The synthesis of n-3 and n-6 polyunsaturated acids (PUFAs) is associated with physiological functions in mammals, being catalyzed by Δ-5D and Δ-6D desaturases and elongases Elovl-2 and Elovl-5. In this context, we aimed to study the chief kinetic features of PUFA liver anabolism, looking upon (i) the time-dependency for the specific activity of Δ-6D, Δ-5D, Elovl2, Elovl2/5 and Elovl5, using n-3 and n-6 precursors between 0 and 240 min ex vivo in mouse liver.; and (ii) the specific activity-substrate (α-linolenic acid; ALA) concentration responses of Δ-6D in the absence and presence of linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), an enzyme regarded as the rate-limiting step in PUFA anabolism.
View Article and Find Full Text PDFAnn Phys Rehabil Med
January 2025
Department of Neurological Physical Medicine and Rehabilitation, St Jacques Hospital, University Hospital of Nantes, 44093 Nantes, France; Laboratory Movement-Interactions-Performance (MIP), EA 4334, University of Nantes, 44322 Nantes, France. Electronic address:
Background: Intrathecal baclofen (ITB) therapy effectively reduces severe spasticity but is associated with complications that can be serious. The evolution of these complications over time and their predictive factors are not well known.
Objectives: The primary aim was to describe the incidence of ITB complications in adults with neurological disorders and disabling spasticity.
J Orthop Surg Res
January 2025
Center for Rehabilitation Research, School of Allied Health Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
Background: The sacroiliac joints (SIJ) are specialized articulations in the pelvis that allow load transfer between the upper and lower body. Traumatic pelvic disruption often requires surgical fixation of at least one of these joints. Subsequent SIJ pain is associated with asymmetries in joint laxity or stiffness.
View Article and Find Full Text PDFAtten Percept Psychophys
January 2025
Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
In previous studies, it was established that individuals can implicitly learn spatiotemporal regularities related to how the distribution of target locations unfolds across the time course of a single trial. However, these regularities were tied to the appearance of salient targets that are known to capture attention in a bottom-up way. The current study investigated whether the saliency of target is necessary for this type of learning to occur.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!