A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO2@CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes. | LitMetric

Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO2@CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes.

ACS Appl Mater Interfaces

New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China.

Published: September 2016

Self-standing and flexible films worked as pseudocapacitor electrodes have been fabricated via a simple vacuum-filtration procedure to stack δ-MnO2@carbon nanotubes (CNTs) composite layer and pure CNT layer one by one with CNT layers ended. The lightweight CNTs layers served as both current collector and supporter, while the MnO2@CNTs composite layers with birnessite-type MnO2 worked as active layer and made the main contribution to the capacitance. At a low discharge current of 0.2 A g(-1), the layered films displayed a high areal capacitance of 0.293 F cm(-2) with a mass of 1.97 mg cm(-2) (specific capacitance of 149 F g(-1)) and thickness of only 16.5 μm, and hence an volumetric capacitance of about 177.5 F cm(-3). Moreover, the films also exhibited a good rate capability (only about 15% fading for the capacitance when the discharge current increased to 5 A g(-1) from 0.2 A g(-1)), outstanding cycling stability (about 90% of the initial capacitance was remained after 5,000 cycles) and high flexibility (almost no performance change when bended to different angles). In addition, the capacitance of the films increased proportionally with the stacked layers and the geometry area. E.g., when the stacked layers were three times many with a mass of 6.18 mg cm(-2), the areal capacitance of the films was increased to 0.764 F cm(-2) at 0.5 A g(-1), indicating a high electronic conductivity. It is not overstated to say that the flexible and lightweight layered films emerged high potential for future practical applications as supercapacitor electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b07161DOI Listing

Publication Analysis

Top Keywords

supercapacitor electrodes
8
capacitance
8
discharge current
8
layered films
8
areal capacitance
8
capacitance films
8
films increased
8
stacked layers
8
films
7
layers
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!