Cellulose nanocrystals (CNCs) were isolated from soy hulls by acid sulfuric hydrolysis. The resulting CNCs were characterized using TEM, AFM, WAXS, elemental analysis and TGA. The CNCs have a high crystallinity, specific surface area and aspect ratio. The aspect ratio (around 100) is the largest ever reported in the literature for a plant cellulose source. These CNCs were used as a reinforcing phase to prepare nanocomposite films by casting/evaporation using natural rubber as matrix. The mechanical properties were studied in both the linear and non-linear ranges. The reinforcing effect was higher than the one observed for CNCs extracted from other sources. It may be assigned not only to the high aspect ratio of these CNCs but also to the stiffness of the percolating nanoparticle network formed within the polymer matrix. Moreover, the sedimentation of CNCs during the evaporation step was found to play a crucial role on the mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.07.073DOI Listing

Publication Analysis

Top Keywords

aspect ratio
16
mechanical properties
12
natural rubber
8
high aspect
8
cellulose nanocrystals
8
isolated soy
8
soy hulls
8
cncs
7
properties natural
4
rubber nanocomposites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!