The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007442 | PMC |
http://dx.doi.org/10.1038/ncomms12508 | DOI Listing |
Expert Rev Proteomics
January 2025
College of Medicine, QU Health, Qatar University, Doha, Qatar.
Objective: Our study presents a novel analysis of the oncogenes and tumor suppressor proteins directly modulated by E6/E7 of high-risk HPV types 16 and 18, in colorectal cancer (CRC).
Methods: HCT 116 (KRAS mutant) & HT-29 (TP53 mutant) cell models of CRC were transduced with E6/E7 of HPV16 and HPV18, individually and in combination. Further, we utilized a liquid chromatography mass spectrometry (LC-MS/MS) approach to analyze and compare the proteomes of both CRC cell models.
BMC Cancer
January 2025
Department of Gynecologic Oncology, Fudan University Shanghai Cancer Centre, Shanghai, China.
Background: To assess the utility of the TCGA molecular classification of endometrial cancer in a well-annotated, moderately sized, consecutive cohort of Chinese patients with ovarian clear cell carcinoma (OCCC).
Methods: We performed DNA sequencing on 80 OCCC patients via a panel that contains 520 cancer-related genes. The TCGA molecular subtyping method was utilized for classification.
Int Dent J
January 2025
Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China. Electronic address:
Introduction And Aims: Oral squamous cell carcinoma (OSCC) is one of the most prevalent malignancy of the head and neck. Early diagnosis of OSCC is difficult and the prognosis has not improved significantly. This study aims to explore the role of tubulin polymerisation promoting protein 3 (TPPP3) in the occurrence and development of OSCC and discover new diagnostic and prognostic markers for OSCC.
View Article and Find Full Text PDFMol Oncol
January 2025
Institut Curie, Inserm U932 - Immunity and Cancer, Paris, France.
Transposable elements provide material for novel gene formation. In particular, DNA transposons have contributed several essential genes involved in various physiological or pathological conditions. Here, we discuss recent findings by Tu et al.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2025
Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China.
SMARCA4-deficient lung cancer, including thoracic SMARCA4-deficient undifferentiated tumors and SMARCA4-deficient nonsmall-cell lung carcinomas, is a rare and aggressive disease characterized by rapid progression and poor prognosis. This cancer was identified as a distinct entity with specific morphologic and molecular features in the 2021 WHO Classification of Thoracic Tumors. Molecular alterations in SMARCA4 are specific to this type of lung cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!