Background: Socially cued anticipatory plasticity (SCAP) has been proposed as a widespread mechanism of adaptive life-history shifts in semelparous species with extreme male mating investment. Such mating systems evolved several times independently in spiders and male reproductive success should critically depend on timely maturation and rapid location of a receptive and, ideally, virgin female. We experimentally investigated socially cued anticipatory plasticity in two sympatric, closely related Nephila species that share many components of their mating systems, but differ in the degree to which male reproductive success depends on mating with virgin females. Juveniles of both species were reared either in the presence or absence of virgin female silk cues. We predicted strong selection on socially cued plasticity in N. fenestrata in which males follow a highly specialized terminal investment strategy, but expected a weaker plastic response in N. senegalensis in which males lost the ability to monopolize females.
Results: Contrary to our predictions, N. fenestrata males presented with virgin female silk cues did not mature earlier than siblings reared isolated from such cues. Males in N. senegalensis, however, showed a significant response to female cues and matured several days earlier than control males. Plastic adjustment of maturation had no effect on male size.
Conclusions: Our results indicate that a strong benefit of mating with virgins due to first male sperm priority does not necessarily promote socially cued anticipatory plasticity. We emphasize the bidirectional mode of developmental responses and suggest that this form of plasticity may not only yield benefits through accelerated maturation, but also by avoiding costs of precipitate maturation in the absence of female cues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000426 | PMC |
http://dx.doi.org/10.1186/s12862-016-0736-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!