Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Water plays an important role in mediating hydrophobic interactions, and yet open questions remain regarding the magnitude, and even the sign, of water-mediated contributions to the potential of mean force between a pair of oily molecules dissolved in water. Here, the water-mediated interaction between 2-butoxyethanol (BE) molecules dissolved in water is quantified using Raman multivariate curve resolution (Raman-MCR), molecular dynamics (MD) simulations, and random mixing (RM) predictions. Our results indicate that the number of contacts between BE molecules at concentrations between 0.2 M and 1 M exceeds RM predictions, but is less than some MD predictions. Moreover, the potential of mean force between BE molecules in water has a well depth that is shallower than the direct interaction between 1-ethoxybutane chains in the gas phase, and thus the water-mediated contribution to BE aggregation is repulsive, as it pulls BE molecules apart rather than pushing them together.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp04379h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!