A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chitosan and gelatin based biodegradable packaging films with UV-light protection. | LitMetric

Chitosan and gelatin based biodegradable packaging films with UV-light protection.

J Photochem Photobiol B

Bio/Polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi 110025, India. Electronic address:

Published: October 2016

Biopolymers are polymers obtained from biological origins and used for various biological and industrial applications. A biopolymer should be non-toxic, non-antigenic, non-irritant, non-carcinogenic, sterilisable and adequately available for their widespread applications. In this study, chitosan (CS) and gelatin (GL) based films were prepared to be used as biodegradable packaging films. CS was blended with GL to improve various physicochemical properties. The blended CSGL films were crosslinked with boric acid (BA) to improve various properties viz. light barrier properties, Water Vapour Permeability (WVP), moisture content (%), Total Solubility Matter (TSM), most important to improve the strength. The studies of transparency, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and optical microscopy confirms that the synthesized films were found to be transparent and homogenous indicating good compatibility among different components. The synthesized CS and GL based films showed UV-light barrier properties as supported by data. The tensile strength of films increases, decreases water solubility, moisture content (%) and WVP on crosslinking. In order to make the crosslinked films more flexible, Polyethylene glycol was used as plasticizer, making the films more flexible and transparent. This study indicates that these biodegradable CS and GL based films are potent to be used as packing films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2016.08.023DOI Listing

Publication Analysis

Top Keywords

based films
12
films
11
chitosan gelatin
8
gelatin based
8
biodegradable packaging
8
packaging films
8
films uv-light
8
barrier properties
8
moisture content
8
films flexible
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!