Induction and Consolidation of Calcium-Based Homo- and Heterosynaptic Potentiation and Depression.

PLoS One

Bernstein Center for Computational Neuroscience, Georg-August-University, 37077 Göttingen, Germany.

Published: August 2017

AI Article Synopsis

  • The study explores how both homo- and heterosynaptic plasticity are crucial for learning and memory by examining their adaptive mechanisms.
  • It demonstrates that the processes behind consolidating short-term synaptic changes into long-lasting states are similar for both types of plasticity.
  • The findings reveal that heterosynaptic plasticity can be locally restricted to nearby synapses, and the model developed aligns with experimental results while offering predictions for future research.

Article Abstract

The adaptive mechanisms of homo- and heterosynaptic plasticity play an important role in learning and memory. In order to maintain plasticity-induced changes for longer time scales (up to several days), they have to be consolidated by transferring them from a short-lasting early-phase to a long-lasting late-phase state. The underlying processes of this synaptic consolidation are already well-known for homosynaptic plasticity, however, it is not clear whether the same processes also enable the induction and consolidation of heterosynaptic plasticity. In this study, by extending a generic calcium-based plasticity model with the processes of synaptic consolidation, we show in simulations that indeed heterosynaptic plasticity can be induced and, furthermore, consolidated by the same underlying processes as for homosynaptic plasticity. Furthermore, we show that by local diffusion processes the heterosynaptic effect can be restricted to a few synapses neighboring the homosynaptically changed ones. Taken together, this generic model reproduces many experimental results of synaptic tagging and consolidation, provides several predictions for heterosynaptic induction and consolidation, and yields insights into the complex interactions between homo- and heterosynaptic plasticity over a broad variety of time (minutes to days) and spatial scales (several micrometers).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999190PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161679PLOS

Publication Analysis

Top Keywords

heterosynaptic plasticity
16
induction consolidation
12
homo- heterosynaptic
12
underlying processes
8
processes synaptic
8
synaptic consolidation
8
homosynaptic plasticity
8
heterosynaptic
7
plasticity
7
processes
5

Similar Publications

Neuromorphic and fully analog in-memory computations are promising for handling vast amounts of data with minimal energy consumption. We have synthesized and studied a series of homo-bimetallic silver purine MOFs (1D and 2D) having direct metal-metal bonding. The N7-derivatized purine ligands are designed to form bi-metallic complexes under ambient conditions, extending to a 1D or 2D metal-organic framework.

View Article and Find Full Text PDF

Systems consolidation is a common feature of learning and memory systems, in which a long-term memory initially stored in one brain region becomes persistently stored in another region. We studied the dynamics of systems consolidation in simple circuit architectures with two sites of plasticity, one in an early-learning and one in a late-learning brain area. We show that the synaptic dynamics of the circuit during consolidation of an analog memory can be understood as a temporal integration process, by which transient changes in activity driven by plasticity in the early-learning area are accumulated into persistent synaptic changes at the late-learning site.

View Article and Find Full Text PDF

Long-term changes of synaptic transmission can be induced by Hebbian-type homosynaptic mechanisms which require activation of both pre- and postsynapse and mediate associative learning, as well as by heterosynaptic mechanisms which do not require activation of the presynapse and are non-associative. The rules for induction of homosynaptic plasticity depend on the distance of the synapse from the soma. Does induction of heterosynaptic plasticity also depend on synaptic location? Here, we investigated heterosynaptic changes in pharmacologically isolated glutamatergic inputs arriving at either the proximal or the distal segments of the apical dendrite of layer 2/3 pyramidal neurons in rat visual cortex.

View Article and Find Full Text PDF

Input specificity of NMDA-dependent GABAergic plasticity in the hippocampus.

Sci Rep

September 2024

Department of Biophysics and Neuroscience, Wroclaw Medical University, 3a Chalubinskiego Str., 50-368, Wroclaw, Poland.

Article Synopsis
  • Sensory experiences lead to lasting changes in synapses, crucial for memory, but the interaction between excitatory and inhibitory synaptic changes is not fully understood.
  • This study examined how NMDA-induced plasticity affects both excitatory and inhibitory synapses in hippocampal CA1 pyramidal cells using several experimental techniques.
  • Results revealed distinct patterns of long-term changes in inhibitory inputs, suggesting a complex relationship between excitation and inhibition, which could help maintain the balance in brain activity and influence how neurons process information.
View Article and Find Full Text PDF

Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca entry through Ca1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!