Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell-cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nprot.2016.092 | DOI Listing |
Front Cell Infect Microbiol
January 2025
College of Public Health, North China University of Science and Technology, Tangshan, China.
Enterohemorrhagic (EHEC) is a contagious foodborne pathogen that specifically colonizes the human large intestine, which is regulated by different environmental stimuli within the gut. Transcriptional regulation of EHEC virulence and infection has been extensively studied, while the posttranscriptional regulation of these processes by small RNAs (sRNAs) remains not fully understood. Here we present a virulence-regulating pathway in EHEC O157:H7, in which the sRNA EvrS binds to and destabilizes the mRNA of Z2269, a novel transcriptional regulator.
View Article and Find Full Text PDFiScience
February 2025
Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA.
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
Accurately defining cell boundaries for spatial transcriptomics is technically challenging. The current major approaches are nuclear staining or mathematical inference, which either exclude the cytoplasm or determine a hypothetical boundary. Here, a new method is introduced for defining cell boundaries: labeling cell membranes using genetically coded fluorescent proteins, which allows precise indexing of sequencing spots and transcripts within cells on sections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!