High-resolution 3D analysis of mouse small-intestinal stroma.

Nat Protoc

Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.

Published: September 2016

Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell-cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2016.092DOI Listing

Publication Analysis

Top Keywords

mouse small-intestinal
8
cells
5
high-resolution analysis
4
analysis mouse
4
small-intestinal stroma
4
stroma detail
4
detail protocol
4
protocol whole-mount
4
whole-mount immunostaining
4
immunostaining mouse
4

Similar Publications

Enterohemorrhagic (EHEC) is a contagious foodborne pathogen that specifically colonizes the human large intestine, which is regulated by different environmental stimuli within the gut. Transcriptional regulation of EHEC virulence and infection has been extensively studied, while the posttranscriptional regulation of these processes by small RNAs (sRNAs) remains not fully understood. Here we present a virulence-regulating pathway in EHEC O157:H7, in which the sRNA EvrS binds to and destabilizes the mRNA of Z2269, a novel transcriptional regulator.

View Article and Find Full Text PDF

The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.

View Article and Find Full Text PDF

Improving Spatial Transcriptomics with Membrane-Based Boundary Definition and Enhanced Single-Cell Resolution.

Small Methods

January 2025

Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.

Accurately defining cell boundaries for spatial transcriptomics is technically challenging. The current major approaches are nuclear staining or mathematical inference, which either exclude the cytoplasm or determine a hypothetical boundary. Here, a new method is introduced for defining cell boundaries: labeling cell membranes using genetically coded fluorescent proteins, which allows precise indexing of sequencing spots and transcripts within cells on sections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!