The synthesis of ω-di-(trideuteromethyl)-trisnorsqualenic acid has been achieved from natural squalene. The synthesis features the use of a Shapiro reaction of acetone-d 6 trisylhydrazone as a key step to implement the terminal isopropylidene-d 6 moiety. The obtained squalenic acid-d 6 has been coupled to gemcitabine to provide the deuterated analogue of squalenoyl gemcitabine, a powerful anticancer agent endowed with self-assembling properties. The Raman spectra of both deuterated and non-deuterated squalenoyl gemcitabine nanoparticles displayed significant Raman scattering signals. They revealed no differences except from the deuterium peak patterns in the silent spectral region of cells. This paves the way for label-free intracellular trafficking studies of squalenoyl nanomedicines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4979966 | PMC |
http://dx.doi.org/10.3762/bjoc.12.109 | DOI Listing |
ChemMedChem
December 2021
Chemistry and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Navarra-IdisNA, Irunlarrea 1, 31008, Pamplona, Spain.
Therapeutic perspectives of bone tumors such as osteosarcoma remain restricted due to the inefficacy of current treatments. We propose here the construction of a novel anticancer squalene-based nanomedicine with bone affinity and retention capacity. A squalenyl-hydroxybisphosphonate molecule was synthetized by chemical conjugation of a 1-hydroxyl-1,1-bisphosphonate moiety to the squalene chain.
View Article and Find Full Text PDFNanomedicine
July 2021
Translational BioSpectrocopy, BioSpecT, EA 7506, Université de Reims, Faculté de Pharmacie, Reims, France. Electronic address:
Intracellular distribution of doxorubicin (DOX) and its squalenoylated (SQ-DOX) nanoparticles (NPs) form in murine lung carcinoma M109 and human breast carcinoma MDA-MB-231 cells was investigated by Raman microspectroscopy. Pharmacological data showed that DOX induced higher cytotoxic effect than SQ-DOX NPs. Raman data were obtained using single-point measurements and imaging on the whole cell areas.
View Article and Find Full Text PDFJ Control Release
June 2021
Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, Cedex, France.. Electronic address:
This « Magnum Opus » emphasizes that serendipity is a corner stone in research. The paths of discovery and innovation often result from the interdisciplinarity of scientific areas that are a priori disconnected from each other. In the 1970s, fundamental discoveries in cell biology led to unexpected advances in galenic pharmacy with the emergence of nanotechnologies for the intracellular delivery of non diffusing molecules.
View Article and Find Full Text PDFCancers (Basel)
July 2020
Chemistry and Pharmaceutical Technology Department, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain.
Due to chemoresistance and a high propensity to form lung metastasis, survival rates in pediatric osteosarcoma (OS) are poor. With the aim to improve anticancer activity in pediatric OS, a multidrug nanomedicine was designed using the alkyl-lysophospholipid edelfosine (EF) co-assembled with squalenoyl-gemcitabine (SQ-Gem) to form nanoassemblies (NAs) of 50 nm. SQ-Gem/EF NAs modified the total Gem pool exposure in the blood stream in comparison with SQ-Gem NAs, which correlated with a better tolerability and a lower toxicity profile after multiple intravenous administrations in mice.
View Article and Find Full Text PDFInt J Pharm
May 2020
Chemistry and Pharmaceutical Technology Department, Universidad de Navarra, Pamplona 31008, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain. Electronic address:
Despite the great advances accomplished in the treatment of pediatric cancers, recurrences and metastases still exacerbate prognosis in some aggressive solid tumors such as neuroblastoma and osteosarcoma. In view of the poor efficacy and toxicity of current chemotherapeutic treatments, we propose a single multitherapeutic nanotechnology-based strategy by co-assembling in the same nanodevice two amphiphilic antitumor agents: squalenoyl-gemcitabine and edelfosine. Homogeneous batches of nanoassemblies were easily formulated by the nanoprecipitation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!