The association of RNA polymerase III (Pol III)-transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III-transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements-centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III-transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III-transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III-dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III-transcribed genes required active transcription. We conclude that the association of Pol III-transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063623 | PMC |
http://dx.doi.org/10.1091/mbc.E16-03-0145 | DOI Listing |
Mol Cell
November 2024
Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:
The transcriptional interplay of human RNA polymerase I (RNA Pol I), RNA Pol II, and RNA Pol III remains largely uncharacterized due to limited integrative genomic analyses for all three enzymes. To address this gap, we applied a uniform framework to quantify global RNA Pol I, RNA Pol II, and RNA Pol III occupancies and identify both canonical and noncanonical patterns of gene localization. Most notably, our survey captures unexpected RNA Pol III recruitment at promoters of specific protein-coding genes.
View Article and Find Full Text PDFPLoS One
August 2024
Department of Microbiology, The Catholic University of Korea, Seoul, Korea.
Single-cell RNA sequencing (scRNA-seq) has emerged as a versatile tool in biology, enabling comprehensive genomic-level characterization of individual cells. Currently, most scRNA-seq methods generate barcoded cDNAs by capturing the polyA tails of mRNAs, which exclude many non-coding RNAs (ncRNAs), especially those transcribed by RNA polymerase III (Pol III). Although previously thought to be expressed constitutively, Pol III-transcribed ncRNAs are expressed variably in healthy and disease states and play important roles therein, necessitating their profiling at the single-cell level.
View Article and Find Full Text PDFGene
January 2024
Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India. Electronic address:
Several covalent modifications are found associated with the transcriptionally active chromatin regions constituted by the genes transcribed by RNA polymerase (pol) II. Pol III-transcribed genes code for the small, stable RNA species, which participate in many cellular processes, essential for survival. Pol III transcription is repressed under most of the stress conditions by its negative regulator Maf1.
View Article and Find Full Text PDFSmall regulatory RNAs (sRNAs) are involved in antiviral defense and gene regulation. Although roles of RNA-dependent RNA Polymerases (RdRPs) in sRNA biology are extensively studied in nematodes, plants and fungi, understanding of RdRP homologs in other animals is still lacking. Here, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
June 2023
Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!