Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response. We found that non-toxic concentrations of CNFs impaired the differentiation, and subsequent maturation of human monocyte-derived (mo)-DCs. In a co-culture with CD4(+)T cells, CNF-treated mo-DCs possessed a weaker allostimulatory and T helper (Th)1 and Th17 polarizing capacity, but a stronger capacity to induce Th2 cells and CD4(+)CD25(hi)FoxP3(hi) regulatory T cells. This correlated with an increased immunoglobulin-like transcript-4 and indolamine dioxygenase-1 expression by CNF-treated mo-DCs, following the partial internalization of CNFs and the accumulation of CD209 and actin bundles at the place of contacts with CNFs. Cumulatively, we showed that CNFs are able to induce an active immune tolerance by inducing tolerogenic DCs, which could be beneficial for the application of CNFs in wound healing and chronic inflammation therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997350 | PMC |
http://dx.doi.org/10.1038/srep31618 | DOI Listing |
Curr Pharm Des
April 2019
Department of Chemistry - Angstrom Laboratory, Uppsala University, Uppsala 75121, Sweden.
Cellulose is an important environmentally-friendly renewable polymer on the earth. Cellulose has been widely used as feedstocks for the synthesis of biomaterials, biofuels and biochemicals. Recently, cellulose and cellulose derivatives have received intense attention in biomedical applications, such as tissue engineering, scaffold, artificial blood vessel, skin grafts, artificial skin, drug carrier, and chronic skin diseases, many of which are somehow related to cancer therapy.
View Article and Find Full Text PDFSci Rep
August 2016
University of Defense, Medical Faculty of the Military Medical Academy, Institute for Medical Research, Belgrade, Serbia.
Cellulose nanofibrills (CNFs) are attractive biocompatible, natural nanomaterials for wide biomedical applications. However, the immunological mechanisms of CNFs have been poorly investigated. Considering that dendritic cells (DCs) are the key immune regulatory cells in response to nanomaterials, our aim was to investigate the immunological mechanisms of CNFs in a model of DC-mediated immune response.
View Article and Find Full Text PDFCarbohydr Polym
August 2016
Biobased Colloids and Materials Group (BiCMat), Departments of Forest Biomaterials, North Carolina State University, Campus Box 8005, NC, USA; Department of Forest Products Technology, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Finland.
Spray technique was used for the adsorption of in-situ silver nanoparticles (AgNPs) onto and inside the surface of nano- and micro- fibrillar cellulose (NFC and MFC) as well as filter paper. The abundance of hydroxyl and carboxyl groups located in NFC and MFC are used to stabilize Ag ions (Ag(+)) which were then in-situ reduced to (AgNPs) by chemical or UV reduction. The surface characteristic features, elemental analysis, particle size as well as size distribution of the obtained MFC, NFC and filter paper loaded with AgNPs were characterized via field emission scanning electron microscopy connected to energy dispersive X-ray spectroscopy (FESEM- EDX) and transmission electron microscopy (TEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!