Generation of human iPS cell line SKiPSc1 from healthy Human Neonatal Foreskin Fibroblast cells.

Stem Cell Res

National Center for Stem Cell Technology (NCSCT), Life Sciences and Environment Research Institute (LSERI), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; SAAD Research & Development Center, Clinical Research Lab.& Radiation Oncology, SAAD Specialist Hospital. P.O. Box 30353, Al Khobar 31952, Saudi Arabia. Electronic address:

Published: July 2016

The SKiPSc1 induced pluripotent stem (iPS) cell line was generated from Human Neonatal Foreskin Fibroblasts (HNFFs) obtained from a healthy donor infant that were reprogrammed using non-integrating Sendai viral vectors expressing Oct3/4, Sox2, c-Myc, and Klf4.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2016.06.006DOI Listing

Publication Analysis

Top Keywords

ips cell
8
human neonatal
8
neonatal foreskin
8
generation human
4
human ips
4
cell skipsc1
4
skipsc1 healthy
4
healthy human
4
foreskin fibroblast
4
fibroblast cells
4

Similar Publications

Background: Cystic Fibrosis-related Bone Disease is an emerging challenge faced by 50 % of adult people with cystic fibrosis (CF). The multifactorial causes of this comorbidity remain elusive. However, congenital bone defects have been observed in animal models with CFTR mutations, suggesting its importance.

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Establishment of a novel method for differentiating into dopaminergic neurons using charged hydrogels.

Biochem Biophys Res Commun

January 2025

Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan. Electronic address:

Parkinson's disease (PD) is a neurodegenerative disease primarily affecting the central nervous system and impacting both the motor system and non-motor systems. Although administration of L-DOPA is effective, it is not a fundamental treatment and has side effects such as diurnal fluctuation and dyskinesia, highlighting the need for new treatment methods. There is a growing interest in dopaminergic neuron transplantation as a potential treatment.

View Article and Find Full Text PDF

TDCPP promotes apoptosis and inhibits the calcium signaling pathway in human neural stem cells.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!