Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243214 | PMC |
http://dx.doi.org/10.1152/ajpregu.00298.2016 | DOI Listing |
Waste Manag
January 2025
Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:
Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.
View Article and Find Full Text PDFEpilepsia
January 2025
Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
Objective: Idiopathic epilepsy (IE) is the most common chronic neurological disease in dogs and an established natural animal model for human epilepsy types with genetic and unknown etiology. However, the metabolic pathways underlying IE remain largely unknown.
Methods: Plasma samples of healthy dogs (n = 39) and dogs with IE (n = 49) were metabolically profiled (n = 121 known target metabolites) and fingerprinted (n = 1825 untargeted features) using liquid chromatography coupled to mass spectrometry.
J Cell Mol Med
January 2025
Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Cancer is a complex disease driven by mutations in the genes that play critical roles in cellular processes. The identification of cancer driver genes is crucial for understanding tumorigenesis, developing targeted therapies and identifying rational drug targets. Experimental identification and validation of cancer driver genes are time-consuming and costly.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.
View Article and Find Full Text PDFJ Vis Exp
December 2024
The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, School of Medicine, Tel Aviv University;
Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!