Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxfenicine is a carnitine-palmitoyl transferase 1b (CPT-1b)-specific inhibitor that has been shown to improve whole body insulin sensitivity while suppressing fatty acid (FA) oxidation and increasing circulating FA. Because the white adipose tissue (WAT) is an organ that stores and releases FAs, this study investigated whether oxfenicine-induced inhibition of FA oxidation affected adiposity and WAT metabolism in rats fed either low (LF) or high-fat (HF) diets. Following 8 wk of dietary intervention, male Sprague-Dawley rats were given a daily intraperitoneal injection of oxfenicine (150 mg/kg body wt) or vehicle (PBS) for 3 wk. Oxfenicine treatment reduced whole body fat oxidation, body weight, and adiposity, and improved insulin sensitivity in HF-fed rats. All of these effects occurred without alterations in food intake, energy expenditure, and ambulatory activity. In vivo oxfenicine treatment reduced FA oxidation and lipolysis in subcutaneous inguinal (SC Ing) adipocytes, whereas glucose incorporation into lipids (lipogenesis) was significantly reduced in both SC Ing and epididymal (Epid) adipocytes. In summary, our results show that oxfenicine-induced inhibition of CPT-1b markedly affects WAT metabolism, leading to reduced adiposity through a mechanism that involves reduced lipogenesis in the SC Ing and Epid fat depots of rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142162 | PMC |
http://dx.doi.org/10.1152/ajpregu.00243.2016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!