SLC4A11, a member of the SLC4 family of bicarbonate transporters, is a widely expressed integral membrane protein, abundant in kidney and cornea. Mutations of SLC4A11 cause some cases of the blinding corneal dystrophies, congenital hereditary endothelial dystrophy, and Fuchs endothelial corneal dystrophy. These diseases are marked by fluid accumulation in the corneal stroma, secondary to defective fluid reabsorption by the corneal endothelium. The role of SLC4A11 in these corneal dystrophies is not firmly established, as SLC4A11 function remains unclear. To clarify the normal function(s) of SLC4A11, we characterized the protein following expression in the simple, low-background expression system Xenopus laevis oocytes. Since plant and fungal SLC4A11 orthologs transport borate, we measured cell swelling associated with accumulation of solute borate. The plant water/borate transporter NIP5;1 manifested borate transport, whereas human SLC4A11 did not. SLC4A11 supported osmotically driven water accumulation that was electroneutral and Na independent. Studies in oocytes and HEK293 cells could not detect Na-coupled HCO transport or Cl/HCO exchange by SLC4A11. SLC4A11 mediated electroneutral NH transport in oocytes. Voltage-dependent OH or H movement was not measurable in SLC4A11-expressing oocytes, but SLC4A11-expressing HEK293 cells manifested low-level cytosolic acidification at baseline. In mammalian cells, but not oocytes, OH/H conductance may arise when SLC4A11 activates another protein or itself is activated by another protein. These data argue against a role of human SLC4A11 in bicarbonate or borate transport. This work provides additional support for water and ammonia transport by SLC4A11. When expressed in oocytes, SLC4A11 transported NH, not NH/H.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5130586 | PMC |
http://dx.doi.org/10.1152/ajpcell.00078.2016 | DOI Listing |
Semin Ophthalmol
December 2024
Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad, Telangana, India.
Background: The anterior segment of the eye plays a crucial role in maintaining the normal intraocular pressure and vision. Developmental defects in the anterior segment structures lead to anterior segment dysgenesis (ASD) and primary congenital glaucoma (PCG), which share overlapping clinical features. Several genes have been mapped and characterized in ASD, some of which are also involved in other glaucoma phenotypes.
View Article and Find Full Text PDFExp Eye Res
November 2024
Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, 100005, China.
Keratoconus (KC) is a complex corneal disorder with a well-recognized genetic component. In this study, we aimed to expand the genetic spectrum of 200 Chinese patients with keratoconus and their unaffected parents. Trio-based whole-exome sequencing was performed in 200 patients with sporadic keratoconus and their unaffected parents.
View Article and Find Full Text PDFArq Bras Oftalmol
September 2024
Department of Ophthalmology, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey.
We present the case of a 37-year-old woman who underwent bilateral penetrating keratoplasty for congenital hereditary endothelial dystrophy at the age of 10 years. Over the subsequent 27 years, the patient's vision slowly deteriorated. Our examination revealed decompensation of the right corneal graft.
View Article and Find Full Text PDFJCI Insight
November 2024
Department of Radiation Oncology and.
End-stage liver disease is marked by portal hypertension, systemic elevations in ammonia, and development of hepatocellular carcinoma (HCC). While these clinical consequences of cirrhosis are well described, it remains poorly understood whether hepatic insufficiency and the accompanying elevations in ammonia contribute to HCC carcinogenesis. Using preclinical models, we discovered that ammonia entered the cell through the transporter SLC4A11 and served as a nitrogen source for amino acid and nucleotide biosynthesis.
View Article and Find Full Text PDFFront Physiol
August 2024
Department of Physiology and Biophysics, The State University of New York: The University at Buffalo, Buffalo, NY, United States.
SLC4A11 is the most abundant membrane transport protein in corneal endothelial cells. Its functional presence is necessary to support the endothelial fluid pump that draws fluid from the corneal stroma, preventing corneal edema. Several molecular actions have been proposed for SLC4A11 including HO transport and cell adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!