Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. Calculated thermodynamic and kinetic data are presented for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. These radicals can be formed via H atom abstraction reactions by Ḣ and Ö atoms and ȮH, HȮ2, and ĊH3 radicals, the rate constants of which have been calculated. Abstraction from the β-hydrogen atom is the dominant process when ȮH is involved, but the reverse holds true for HȮ2 radicals. The subsequent β-scission of the radicals formed is also determined, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.6b03994 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!