We analysed the response of the model bacterium Lactococcus lactis to abrupt depletion of glucose after several generations of exponential growth. Glucose depletion resulted in a drastic drop in the energy charge accompanied by an extremely low GTP level and an almost total arrest of protein synthesis. Strikingly, the cell prioritized the continued synthesis of a few proteins, of which the ribosomal dimerization factor YfiA was the most highly expressed. Transcriptome analysis showed no immediate decrease in total mRNA levels despite the lowered nucleotide pools and only marginally increased levels of the yfiA transcript. Severe up-regulation of genes in the FruR, CcpA, ArgR and AhrC regulons were consistent with a downshift in carbon and energy source. Based upon the results, we suggest that transcription proceeded long enough to record the transcriptome changes from activation of the FruR, CcpA, ArgR and AhrC regulons, while protein synthesis stopped due to an extremely low GTP concentration emerging a few minutes after glucose depletion. The yfiA deletion mutant exhibited a longer lag phase upon replenishment of glucose and a faster death rate after prolonged starvation supporting that YfiA-mediated ribosomal dimerization is important for keeping long-term starved cells viable and competent for growth initiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.000362 | DOI Listing |
Nucleic Acids Res
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.
View Article and Find Full Text PDFNat Commun
November 2024
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
Mechanisms by which G-patch activators tune the processive multi-tasking ATP-dependent RNA helicase Prp43 (DHX15 in humans) to productively remodel diverse RNA:protein complexes remain elusive. Here, a comparative study between a herein and previously characterized activators, Tma23 and Pxr1, respectively, defines segments that organize Prp43 function during ribosome assembly. In addition to the activating G-patch, we discover an inhibitory segment within Tma23 and Pxr1, I-patch, that restrains Prp43 ATPase activity.
View Article and Find Full Text PDFChem Sci
November 2024
Department of Chemistry, University of Rochester Rochester NY 14627 USA.
RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany.
Bioresour Technol
November 2024
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China. Electronic address:
Signal-molecule-mediated strategies are proposed for aerobic granular sludge (AGS), but the regulatory mechanisms behind AGS formation are largely unexplored. In this study, two sequence batch reactors (SBRs) were operated to investigate the regulation of diffusible signal factor (DSF) in AGS formation. DSF secretion in Reactor 2 (R2: 10 °C→25 °C) decreased by 15 % compared to Reactor 1 (R1: 25 °C→10 °C), correlating with a 26 % increase in extracellular polymeric substance (EPS) concentration, resulting in a 63 % acceleration of the granulation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!