Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Intrauterine growth restriction (IUGR) predisposes to cardiovascular diseases in adulthood. The mechanisms of this phenomenon remain cryptic. We hypothesized that heart mitochondria in IUGR-born adult rats are more sensitive to acute hypoxia which translates into dysfunctional cardiac response to hypoxic stress.
Methods: Adult IUGR-born male rats (the offspring of dams fed with calories-restricted diet during pregnancy) were exposed to acute hypoxic stress with echocardiographic assessment of cardiac function. In parallel, mitochondrial respiration in organelles isolated from left ventricle (LV) and right ventricle (RV) was tested in normoxic and anoxic conditions. The extent of post-anoxic inhibition of mitochondrial respiration and cardiac function was compared with controls, non-IUGR rats.
Results: Compared with controls, in the IUGR rats hypoxia significantly reduced only RV contractility, evidenced by decreased fractional shortening, functional area of contraction, and tricuspid annular plane systolic excursion. In isolated mitochondria, anoxic challenge inhibited respiratory chain in both groups of rats. However, compared with controls, the extent of anoxic mitochondrial depression was significantly greater in IUGR-born rats, but only in the organelles isolated from RV.
Conclusions: In adult IUGR-born rats, mitochondria from RV are hypersensitive to oxygen deprivation and this translates into maladaptive RV cardiac response to acute hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/pr.2016.124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!