Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current prognostic factors fail to accurately determine prognosis for patients with esophageal squamous cell carcinoma (ESCC) after surgery. Here, we constructed a survival prediction model for prognostication in patients with ESCC. Candidate molecular biomarkers were extracted from the Gene Expression Omnibus (GEO), and Cox regression analysis was performed to determine significant prognostic factors. The survival prediction model was constructed based on cluster and discriminant analyses in a training cohort (N=205), and validated in a test cohort (N=207). The survival prediction model consisting of two genes (UBE2C and MGP) and two clinicopathological factors (tumor stage and grade) was developed. This model could be used to accurately categorize patients into three groups in the test cohort. Both disease-free survival and overall survival differed among the diverse groups (P<0.05). In summary, we have developed and validated a predictive model that is based on two gene markers in conjunction with two clinicopathological variables, and which can accurately predict outcomes for ESCC patients after surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5325382 | PMC |
http://dx.doi.org/10.18632/oncotarget.11362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!