Background: There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication.

Methodology/principal Findings: Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.

Conclusions/significance: The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps cellular proteins for efficient amplification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996428PMC
http://dx.doi.org/10.1371/journal.pntd.0004921DOI Listing

Publication Analysis

Top Keywords

rna binding
12
binding proteins
12
dengue virus
12
host factors
12
proteins
11
denv
9
proteins dengue
8
viral rna
8
cellular proteins
8
efficient amplification
8

Similar Publications

Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.

Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.

View Article and Find Full Text PDF

Background: Tulipa gesneriana reproduces vegetatively by the development of bulb clusters from axillary meristems in the scales of a mother bulb. While part of the daughter bulbs in a cluster develop into large, flowering bulbs, others stay small and vegetative under the same environmental conditions. This study aims to investigate how these different developmental fates are orchestrated.

View Article and Find Full Text PDF

African American (AA) kidney transplant recipients exhibit a higher rate of graft loss compared with other racial and ethnic populations, highlighting the need to identify causative factors. Here, in the Genomics of Chronic Allograft Rejection cohort, pretransplant blood RNA sequencing revealed a cluster of four consecutive missense single-nucelotide polymorphisms (SNPs), within the leukocyte immunoglobulin-like receptor B3 (LILRB3) gene, strongly associated with death-censored graft loss. This SNP cluster (named LILRB3-4SNPs) encodes missense mutations at amino acids 617-618 proximal to a SHP1/2 phosphatase-binding immunoreceptor tyrosine-based inhibitory motif.

View Article and Find Full Text PDF

The m6A reader IGF2BP3 promotes HCC progression by enhancing MCM10 stability.

Sci Rep

March 2025

Department of Gastroenterology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330000, People's Republic of China.

Abnormal N6-methyladenosine (m6A) modifications were associated with the occurrence, development, and metastasis of cancer. However, the functions and mechanisms of m6A regulators in cancer remained largely elusive and should be explored. Here, we identified that insulin like growth Factor 2 mRNA binding protein 3 (IGF2BP3) was specifically overexpressed and associated with poor prognosis in liver hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

CIRP contributes to multiple organ damage in acute pancreatitis by increasing endothelial permeability.

Commun Biol

March 2025

National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Acute pancreatitis can lead to systemic inflammation and multiple organ damage. Increased endothelial permeability is a hallmark of systemic inflammation. Several studies have demonstrated that cold-inducible RNA-binding protein (CIRP) functions as a proinflammatory factor in various diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!