Cross Section of OH Radical Overtone Transition near 7028 cm(-1) and Measurement of the Rate Constant of the Reaction of OH with HO2 Radicals.

J Phys Chem A

CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, Université Lille, F-59000 Lille, France.

Published: September 2016

The absorption cross section of an overtone transition of OH radicals at 7028.831 cm(-1) has been measured using an improved experimental setup coupling laser photolysis to three individual time-resolved detection techniques. Time-resolved relative OH radical profiles were measured by laser-induced fluorescence (LIF), and their absolute profiles have been obtained by cw-cavity ring-down spectroscopy (cw-CRDS). HO2 radicals were quantified simultaneously at the well-characterized absorption line at 6638.21 cm(-1) by a second cw-CRDS absorption path. Initial OH concentrations and thus their absorption cross sections have been deduced from experiments of 248 nm photolysis of H2O2: OH and HO2 profiles have been fitted to a simple kinetic model using well-known rate constants. The rate constant of the reaction between OH and HO2 radicals turned out to be sensitive to the deduction of the initial OH concentration and has been revisited in this work: OH decays have been observed in the presence of varying excess HO2 concentrations. A rate constant of (1.02 ± 0.06) × 10(-10) cm(3) s(-1) has been obtained, in good agreement with previous measurements and recent recommendations. An absorption cross section of σOH = (1.54 ± 0.1) × 10(-19) cm(2) at a total pressure of 50 Torr helium has been obtained from consistent fitting of OH and HO2 profiles in a large range of concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b06477DOI Listing

Publication Analysis

Top Keywords

rate constant
12
ho2 radicals
12
absorption cross
12
overtone transition
8
constant reaction
8
reaction ho2
8
ho2 profiles
8
ho2
6
absorption
5
cross
4

Similar Publications

Average Time-Delays for the Scattering of O Atoms from O Molecules.

J Chem Theory Comput

January 2025

Laboratoire ICB, UMR-6303 CNRS/uB, Université de Bourgogne, 9 avenue Alain Savary, 21078 Cedex Dijon, France.

We report full quantum-computed average microcanonical, initial state-specific, and canonical cumulative time-delays associated with the O + O scattering, presented as a function of total energy (in relation to an idealized molecular beam experiment) or temperature (for the properties of the gas phase in bulk conditions). We show that these quantities are well-defined and computable, with a temperature-dependent (canonical) time-delay presenting a smooth, monotonic decreasing behavior with temperature, despite an energy-dependent (microcanonical) time-delay of apparent chaotic character. We discuss differences in behavior when considering isotopic variations, O + OO and O + OO, with respect to the reference process O + OO and reveal a greater magnitude of the cumulative time-delay when genuinely reactive events can take place, in the presence of O.

View Article and Find Full Text PDF

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions.

Nat Commun

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.

In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.

View Article and Find Full Text PDF

The 2021 American Hand Therapy Foundation research priorities survey.

J Hand Ther

January 2025

University of Texas Medical Branch, School of Medicine, Department of Orthopaedic Surgery and Rehabilitation, Galveston, TX, USA.

Background: In 1998, the American Hand Therapy Foundation (AHTF) surveyed Certified Hand Therapists and active Charter Members of the American Society of Hand Therapists to identify hand rehabilitation research priorities, guide grant awards, and confirm alignment with the foundation's mission.

Purpose: The American Hand Therapy Foundation repeated the survey in 2021 to confirm that its award funding was consistent with hand therapists' research priorities.

Study Design: Convergent parallel mixed method study design.

View Article and Find Full Text PDF

Involvement of inorganic nitrogen species (NO (x = 2, 3)) in the degradation of organic contaminants in environmental waters via UV irradiation or chemical oxidation: A dual-edged approach.

Sci Total Environ

January 2025

Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou, 510000, China.

OH-mediated advanced oxidation processes (AOPs) are widely used in wastewater treatment and drinking water purification. Recently, an increasing number of studies have indicated that common inorganic nitrogen ions can efficiently generate •OH under UV irradiation, demonstrating strong performance in the degradation of various contaminants. Conversely, the presence of inorganic nitrogen ions in UV or other oxidation processes dramatically increases the yield of toxic nitro (so)-aromatic products and the formation potential of nitrogenous disinfection by-products with high genotoxicity and cytotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!