The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates the translocation of the two enzymatic moieties of the toxin to the cytosol. Two PA receptors are known, with capillary morphogenesis protein 2 (CMG2) being the more important for pathogenesis and tumor endothelial marker 8 (TEM8) playing a minor role. The C-terminal PA domain 4 (PAD4) has extensive interactions with the receptors and is required for binding. Our previous study identified PAD4 variants having enhanced TEM8 binding specificity. To obtain PA variants that selectively bind to CMG2, here we performed phage display selections using magnetic beads having bound CMG2. We found that PA residue isoleucine 656 plays a critical role in PA binding to TEM8 but has a much lesser effect on PA binding to CMG2. We further characterized the role of residue 656 in distinguishing PA binding to CMG2 versus TEM8 by substituting it with the other 19 amino acids. Of the resulting variants, PA I656Q and PA I656V had significantly reduced activity on TEM8-expressing CHO cells but maintained their activity on CMG2-expressing CHO cells. The preference of these PA mutants for CMG2 over TEM8 was further demonstrated using mouse embryonic fibroblast cells and mice deficient in the CMG2 and/or the TEM8 receptors. The structural basis of the alterations in the receptor binding activities of these mutants is also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063985PMC
http://dx.doi.org/10.1074/jbc.M116.753301DOI Listing

Publication Analysis

Top Keywords

anthrax toxin
8
protective antigen
8
variants selectively
8
cmg2
8
cmg2 tem8
8
tem8 receptors
8
binding cmg2
8
cho cells
8
tem8
7
binding
6

Similar Publications

MAP Kinase Signaling at the Crossroads of Inflammasome Activation.

Immunol Rev

January 2025

Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.

Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Comparing microbiological and molecular diagnostic tools for the surveillance of anthrax.

PLoS Negl Trop Dis

November 2024

Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.

The diagnosis of anthrax, a zoonotic disease caused by Bacillus anthracis can be complicated by detection of closely related species. Conventional diagnosis of anthrax involves microscopy, culture identification of bacterial colonies and molecular detection. Genetic markers used are often virulence gene targets such as B.

View Article and Find Full Text PDF

Hyaline fibromatosis syndrome is a rare, progressive and fatal autosomal recessive disorder characterised by multiple subcutaneous skin nodules, osteopenia, joint contractures, failure to thrive, diarrhoea and frequent infections. There is diffuse deposition of hyaline material in the skin, gastrointestinal tract, muscle and endocrine glands. The disease is often underdiagnosed since infants affected with the disease pass away early prior to establishing a final diagnosis.

View Article and Find Full Text PDF

causes anthrax through a combination of bacterial infection and toxemia. As a major virulence factor of , anthrax lethal toxin (LT) is a zinc-dependent metalloproteinase, exerting its cytotoxicity through proteolytic cleavage of the mitogen-activated protein kinase kinases, thereby shutting down the MAPK pathways. Anthrax lethal toxin induces host lethality mostly by targeting the cardiovascular system.

View Article and Find Full Text PDF

Repurposing FDA-approved disulfiram for targeted inhibition of diphtheria toxin and the binary protein toxins of and .

Front Pharmacol

September 2024

Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.

Article Synopsis
  • Many bacteria release AB-type protein toxins that disrupt cell functions, causing illness; targeting these toxins could lead to new treatments.
  • The FDA-approved drug disulfiram (DSF), typically used for alcohol dependence, shows potential in protecting cells from various toxins at low concentrations.
  • DSF appears to inhibit the translocation of toxic A subunits into cells without significantly affecting toxin binding or activity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!