Background: Respiratory syncytial virus (RSV) is the global leading cause of lower respiratory tract infection in infants. Nearly 30% of all infected infants develop severe disease including bronchiolitis, but susceptibility mechanisms remain unclear.

Methods: We infected a panel of 30 inbred strains of mice with RSV and measured changes in lung disease parameters 1 and 5days post-infection and they were used in genome-wide association (GWA) studies to identify quantitative trait loci (QTL) and susceptibility gene candidates.

Findings: GWA identified QTLs for RSV disease phenotypes, and the innate immunity scavenger receptor Marco was a candidate susceptibility gene; targeted deletion of Marco worsened murine RSV disease. We characterized a human MARCO promoter SNP that caused loss of gene expression, increased in vitro cellular response to RSV infection, and associated with increased risk of disease severity in two independent populations of children infected with RSV.

Interpretation: Translational integration of a genetic animal model and in vitro human studies identified a role for MARCO in human RSV disease severity. Because no RSV vaccines are approved for clinical use, genetic studies have implications for diagnosing individuals who are at risk for severe RSV disease, and disease prevention strategies (e.g. RSV antibodies).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049919PMC
http://dx.doi.org/10.1016/j.ebiom.2016.08.011DOI Listing

Publication Analysis

Top Keywords

rsv disease
20
rsv
10
disease
9
respiratory syncytial
8
syncytial virus
8
virus rsv
8
innate immunity
8
immunity scavenger
8
scavenger receptor
8
receptor marco
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!