Rankl, the major pro-osteoclastogenic cytokine, is synthesized as a transmembrane protein that can be cleaved by specific endopeptidases to release a soluble form (sRankl). We have previously reported that interleukin-33 (IL-33) induces expression of Tnfsf11, the Rankl-encoding gene, in primary osteoblasts, but we failed to detect sRankl in the medium. Since we also found that PTH treatment caused sRankl release in a similar experimental setting, we directly compared the influence of the two molecules. Here we show that treatment of primary murine osteoblasts with PTH causes sRankl release into the medium, whereas IL-33 only induces Tnfsf11 expression. This difference was not explainable by alternative splicing or by PTH-specific induction of endopeptidases previously shown to facilitate Rankl processing. Since sRankl release after PTH administration was blocked in the presence a broad-spectrum matrix metalloprotease inhibitor, we applied genome-wide expression analyses to identify transcriptional targets of PTH in osteoblasts. We thereby confirmed some of the effects of PTH established in other systems, but additionally identified few PTH-induced genes encoding metalloproteases. By comparing expression of these genes following administration of IL-33, PTH and various other Tnfsf11-inducing molecules, we observed that PTH was the only molecule simultaneously inducing sRankl release and Adamts1 expression. The functional relevance of the putative influence of PTH on Rankl processing was further confirmed in vivo, as we found that daily injection of PTH into wildtype mice did not only increase bone formation, but also osteoclastogenesis and sRankl concentrations in the serum. Taken together, our findings demonstrate that transcriptional effects on Tnfsf11 expression do not generally trigger sRankl release and that PTH has a unique activity to promote the proteolytic processing of Rankl.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2016.08.016DOI Listing

Publication Analysis

Top Keywords

srankl release
20
pth
10
induces expression
8
proteolytic processing
8
processing rankl
8
primary murine
8
murine osteoblasts
8
srankl
8
il-33 induces
8
tnfsf11 expression
8

Similar Publications

Pharmacological characterization of AS2690168, a novel small molecule RANKL signal transduction inhibitor.

Eur J Pharmacol

June 2022

Drug Discovery Research, Astellas Pharma Inc. 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.

Pathological osteolysis is associated with excessive bone resorption by activated osteoclasts. Given that receptor activator of NF-kB and its ligand (RANKL) are key players in the differentiation and activation of osteoclasts, the RANKL/RANK signaling pathway is considered a promising target for the development of effective osteoclastogenesis inhibitors. We previously found that the orally available compound, AS2690168, suppresses RANKL-induced osteoclastogenesis of RAW264 cells.

View Article and Find Full Text PDF

The hidden secrets of soluble RANKL in bone biology.

Cytokine

August 2021

Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The discovery of cytokine tumor necrosis factor (TNF) in the 20th century revealed numerous secrets about organ development. In particular, the functions identified for the receptor activator of nuclear factor kappa-β (NF-κβ) ligand (also known as the RANKL/osteoprotegerin ligand (OPGL) or RANK ligand/TNFSF11) in the homeostasis of skeletal structure, function and regulation were not anticipated. Empirical evidence established the receptor-ligand interaction of RANKL with RANK in osteoclast formation.

View Article and Find Full Text PDF

DC-STAMP and TACE Levels are Higher in Patients with Periodontitis.

Braz Dent J

June 2020

Laboratory of Neuroimmune Interface of Pain Research Instituto de Pesquisas São Leopoldo Mandic, Faculdade São Leopoldo Mandic, Campinas, SP, Brazil.

Although periodontitis is one of the commonest infectious inflammatory diseases in humans, the mechanisms involved with its immunopathology remain ill understood. Numerous molecules may induce inflammation and lead to bone resorption, secondary to activation of monocytes into osteoclasts. TACE (TNF-α converting enzyme) and DC-STAMP (dendritic cell-specific transmembrane protein) appear to play a role on bone resorption since TACE induces the release of sRANKL (soluble receptor activator of nuclear factor kappa-β ligand) whereas DC-STAMP is a key factor in osteoclast induction.

View Article and Find Full Text PDF

Circulating IL-17A Levels in Postmenopausal Women with Primary Hyperparathyroidism.

Mediators Inflamm

February 2021

Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Background: Primary hyperparathyroidism (PHPT) is a common cause of secondary osteoporosis in postmenopausal women. Th17 lymphocytes and the released cytokine IL-17A play an important role in bone metabolism. Th17 cells have been shown to be activated by PTH, and peripheral blood T cells from patients affected with PHPT express higher levels of IL-17A mRNA than controls.

View Article and Find Full Text PDF

Possible link between FSH and RANKL release from adipocytes in men with impaired gonadal function including Klinefelter syndrome.

Bone

June 2019

Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA. Electronic address:

Introduction: The FSH receptor (FSHR) has been found to be expressed in human bone cells and bone marrow-adipocytes, and highly-debated mouse studies have suggested extra-gonadal effects of gonadotropins on glucose, adipocyte and bone homeostasis. These putative effects could be direct or indirectly mediated by endocrine factors released from bone-cells or adipocytes. Here, we investigated whether gonadotropins are linked with glucose- and lipid-metabolism in hypergonadotropic men.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!