A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Geography of Adolescent Obesity in the U.S., 2007-2011. | LitMetric

Geography of Adolescent Obesity in the U.S., 2007-2011.

Am J Prev Med

Community Health of Central Washington, Yakima, Washington.

Published: December 2016

Introduction: Obesity remains a significant threat to the current and long-term health of U.S. adolescents. The authors developed county-level estimates of adolescent obesity for the contiguous U.S., and then explored the association between 23 conceptually derived area-based correlates of adolescent obesity and ecologic obesity prevalence.

Methods: Multilevel small area regression methods applied to the 2007 and 2011-2012 National Survey of Children's Health produced county-level obesity prevalence estimates for children aged 10-17 years. Exploratory multivariable Bayesian regression estimated the cross-sectional association between nutrition, activity, and macrosocial characteristics of counties and states, and county-level obesity prevalence. All analyses were conducted in 2015.

Results: Adolescent obesity varies geographically with clusters of high prevalence in the Deep South and Southern Appalachian regions. Geographic disparities and clustering in observed data are largely explained by hypothesized area-based variables. In adjusted models, activity environment, but not nutrition environment variables were associated with county-level obesity prevalence. County violent crime was associated with higher obesity, whereas recreational facility density was associated with lower obesity. Measures of the macrosocial and relational domain, including community SES, community health, and social marginalization, were the strongest correlates of county-level obesity.

Conclusions: County-level estimates of adolescent obesity demonstrate notable geographic disparities, which are largely explained by conceptually derived area-based contextual measures. This ecologic exploratory study highlights the importance of taking a multidimensional approach to understanding the social and community context in which adolescents make obesity-relevant behavioral choices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118145PMC
http://dx.doi.org/10.1016/j.amepre.2016.06.016DOI Listing

Publication Analysis

Top Keywords

adolescent obesity
20
obesity
12
county-level obesity
12
obesity prevalence
12
county-level estimates
8
estimates adolescent
8
conceptually derived
8
derived area-based
8
geographic disparities
8
county-level
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!