β-Ureidopropionase deficiency is a rare autosomal recessive disease affecting the last step of pyrimidine degradation, and it is caused by a mutation in the UPB1 gene. Approximately 30 cases have been reported to date, with a phenotypical variability ranging from asymptomatic to severe neurological illness. Non-neurological symptoms have been rarely reported. We describe a case of this disease with developmental delay and dysmorphic features. Gas chromatography-mass spectrometry-based urine metabolomics demonstrated significant (⩾+4.5 standard deviation after logarithmic transformation) elevations of β-ureidopropionic acid and β-ureidoisobutyric acid, strongly suggesting a diagnosis of β-ureidopropionase deficiency. Subsequent quantitative analysis of pyrimidines by liquid chromatography-tandem mass spectrometry supported this finding. Genetic testing of the UPB1 gene confirmed compound heterozygosity of a novel mutation (c.976C>T) and a previously-reported mutation (c.977G>A) that is common in East Asians. β-Ureidopropionase deficiency is probably underdiagnosed, considering a wide phenotypical variability, non-specific neurological presentations, and an estimated prevalence of 1/5000-6000. Urine metabolomics should be considered for patients with unexplained neurological symptoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.braindev.2016.08.001 | DOI Listing |
Sci Rep
December 2024
Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, 450000, P. R. China.
The relationship between vitamin C nutritional status and inflammation has garnered increasing attention, but studies in younger populations are limited. This study aimed to investigate the association between serum vitamin C and high-sensitivity C-reactive protein (hs-CRP) levels in children and adolescents. A cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES).
View Article and Find Full Text PDFSci Rep
December 2024
Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, PR China.
The INO80 chromatin remodeling complex plays a critical role in shaping the dynamic chromatin environment. The diverse functions of the evolutionarily conserved INO80 complex have been widely reported. However, the role of INO80 in modulating the histone variant H2A.
View Article and Find Full Text PDFNat Commun
December 2024
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!