Moxifloxacin loaded gelatin nanoparticles for ocular delivery: Formulation and in-vitro, in-vivo evaluation.

J Colloid Interface Sci

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, United States. Electronic address:

Published: December 2016

The current research focuses on developing positively charged gelatin nanoparticles loaded with moxifloxacin for its effective ocular delivery and controlled release in corneal eye layer. We selected type A gelatin because of its biodegradable and non-toxic nature as the polymer of choice for fabricating the nanoparticles by a modified two step desolvation technique. The produced nanoparticles were positively charged (+24±0.12mV) with a narrow particle size of 175±1.11nm as measured by dynamic light scattering (DLS). The in-vitro drug release from the nanoformulations exhibited a burst effect in the first hour followed by a controlled release of the drug for the subsequent 12h. The Korsmeyer-Peppas model showed better linearity and the formulations displayed non-Fickian drug release pattern. The optimized formulation was assessed for its utility as an anti-bacterial agent and its effectiveness was tested on the corneal eye surface of rabbits. The in-vivo tolerance tests revealed that the drug loaded nano-formulations was non-irritant to the ocular tissues indicating its safety. The in-vivo anti-bacterial activity of the nanosuspension was more effective against S. aureus than the commercially market product, MoxiGram®. Microbiological efficacy assessed against B. subtilus using cup-plate method suggested that our fabricated nanosuspension possess better anti-microbial activity as compared to the commercial agent, MoxiGram® revealing promising potentials for the currently developed gelatin based nanoformualtions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.08.018DOI Listing

Publication Analysis

Top Keywords

gelatin nanoparticles
8
ocular delivery
8
positively charged
8
controlled release
8
corneal eye
8
drug release
8
moxifloxacin loaded
4
gelatin
4
loaded gelatin
4
nanoparticles
4

Similar Publications

We herein demonstrate the utility of gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA)-cerium oxide (CeO) hydrogel inks for manufacturing hydrogel scaffolds with antimicrobial efficacy by vat photopolymerization. For uniform blending with GelMA/PEGDA hydrogels, CeO nanoparticles with a round shape were synthesized by the precipitation method coupled with calculation at 600 °C. In addition, they had highly crystalline phases and the desired chemical structures (oxidation states of Ce and Ce) required for outstanding antimicrobial efficacy.

View Article and Find Full Text PDF

Hybrid multicompartment artificial architectures, inherited from different compartmental systems, possess separate microenvironments that can perform different functions. Herein, a hybrid compartmentalized architecture via hybridizing ferritin nanocage (Fn) with non-aqueous droplets using aminated-modified amphiphilic gelatin (AGEL) is proposed, which enables the generation of compartmentalized emulsions with hybrid multicompartments. The resulting compartmentalized emulsions are termed "hybrasome".

View Article and Find Full Text PDF

3D bioprinted piezoelectric hydrogel synergized with LIPUS to promote bone regeneration.

Mater Today Bio

April 2025

Air Force Clinical College, The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.

Bone defects resulting from trauma, tumor resection, non-union of fractures, and infections present enormous challenges in treatment. Although three-dimensional (3D) bioprinting plays an important role in repairing bone tissues, the lack of mechanical properties and osteoinductive ability of the bioinks remains a barrier for the application of the technology. In this study, we used advanced 3D bioprinting technology to create a novel piezoelectric hydrogel scaffold (Gel/PBT@BMSCs) which consisted of bone marrow-derived mesenchymal stem cells (BMSCs), gelatin methacryloyl (GelMA), and polyethylene glycol (PEG)-modified barium titanate (BT) nanoparticles.

View Article and Find Full Text PDF

In the current study, gelatinized potato starch was modified by decanoyl chloride and curcumin via esterification and pH-driven method at two pH levels (pH 8 and 12), respectively, followed by precipitation and formation of anionic nanoparticles. The effects of modifications on the various properties of starch nanoparticles were investigated. A decrease in mean particle diameter and branching degree as well as an increase in product mass, fatty acid substitution degree (0.

View Article and Find Full Text PDF

Wound healing has been a continuous critical focus in clinical practice, posing the ongoing challenges and burdens to patients. Current attempts tend to develop multi-drug loaded patches with spatial design. Herein, we present a multifunctional microneedle patch that integrates different drugs into separated regions for wound treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!