Hyperactivation of the PI3K/AKT/mTORC1 signaling pathway is a hallmark of the majority of sporadic human cancers. Paradoxically, chronic activation of this pathway in nontransformed cells promotes senescence, which acts as a significant barrier to malignant progression. Understanding how this oncogene-induced senescence is maintained in nontransformed cells and conversely how it is subverted in cancer cells will provide insight into cancer development and potentially identify novel therapeutic targets. High-throughput screening provides a powerful platform for target discovery. Here, we describe an approach to use RNAi transfection of a pre-established AKT-induced senescent cell population and subsequent high-content imaging to screen for senescence regulators. We have incorporated multiparametric readouts, including cell number, proliferation, and senescence-associated beta-galactosidase (SA-βGal) staining. Using machine learning and automated image analysis, we also describe methods to classify distinct phenotypes of cells with SA-βGal staining. These methods can be readily adaptable to high-throughput functional screens interrogating the mechanisms that maintain and prevent senescence in various contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1089/adt.2016.739DOI Listing

Publication Analysis

Top Keywords

high-content imaging
8
senescence-associated beta-galactosidase
8
oncogene-induced senescence
8
nontransformed cells
8
sa-βgal staining
8
senescence
5
combining high-content
4
imaging phenotypic
4
phenotypic classification
4
classification analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!