Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates.

ACS Appl Mater Interfaces

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Published: September 2016

Nanoporous metal films are promising substrates for surfaced-enhanced Raman scattering (SERS) measurement, owing to their homogeneity, large surface area, and abundant hot-spots. Herein, a facile procedure was developed to fabricate nanoporous Ag film on various substrate surfaces. Thermally deposited Ag film was first treated with O2 plasma, resulting in porous Ag/AgxO film (AgxO-NF) with nanoscale feature. Sodium citrate was then used to reduce AgxO to Ag, forming nanoporous Ag film (AgNF) with similar morphology. The AgNF substrate demonstrates 30-fold higher Raman intensity than Ag film over polystyrene nanospheres (d = 600 nm) using 4-mercaptobenzoic acid (4-MBA) as the sensing molecule. Comparing with ordinary Raman measurement on 4-MBA solution, an enhancement factor of ∼6 × 10(6) was determined for AgNF. The AgNF substrate was evaluated for benzoic acid, 4-nitrophenol, and 2-mercaptoethanesulfonate, showing high SERS sensitivity for chemicals that bind weakly to Ag surface and molecules with relatively small Raman cross section at micromolar concentration. In addition to its simplicity, the procedure can be applied to various materials such as transparency film, filter paper, hard polystyrene film, and aluminum foil, revealing similar Raman sensitivity. By testing the durability of the substrate, we found that the AgxO films can be stored in ambient conditions for more than 90 days and still deliver the same SERS intensity if the films are treated with sodium citrate before use. These results demonstrate the advantage of the proposed approach for mass production of low-cost, sensitive, and durable SERS substrates. The transferable nature of these AgNF to different flexible surfaces also allows their easy integration with other sensing schemes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b08191DOI Listing

Publication Analysis

Top Keywords

film
8
sers substrates
8
nanoporous film
8
sodium citrate
8
agnf substrate
8
sers
5
raman
5
agnf
5
nanoporous
4
nanoporous silver
4

Similar Publications

The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices' photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined.

View Article and Find Full Text PDF

Ultra-High Sensitivity Methane Gas Sensor Based on Cryptophane-A Thin Film Depositing in Double D-Shaped Photonic Crystal Fiber Using the Vernier Effect.

Sensors (Basel)

December 2024

State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.

Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same.

View Article and Find Full Text PDF

Flexible Piezoresistive Film Pressure Sensor Based on Double-Sided Microstructure Sensing Layer.

Sensors (Basel)

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

Flexible thin-film pressure sensors have garnered significant attention due to their applications in industrial inspection and human-computer interactions. However, due to their ultra-thin structure, these sensors often exhibit lower performance, including a narrow pressure response range and low sensitivity, which constrains their further application. The most commonly used microstructure fabrication methods are challenging to apply to ultra-thin functional layers and may compromise the structural stability of the sensors.

View Article and Find Full Text PDF

Detection and Quantification of DNA by Fluorophore-Induced Plasmonic Current: A Novel Sensing Approach.

Sensors (Basel)

December 2024

Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.

We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.

View Article and Find Full Text PDF

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!