Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress.

Front Plant Sci

Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China; Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China.

Published: August 2016

Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to carboxylation sites in chloroplasts under drought stress conditions is, at least in some plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2 (gm) may considerably affect both photosynthesis and water use efficiency (WUE) in plants under drought conditions. The aim of our study was to detect the responses of gm in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under long-term progressive drought. Based on the measurement of gas-exchange parameters the variability of genotypic responses was analyzed at stomatal (stomata closure) and non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In general, progressive drought caused an increasing leaf diffusion resistance against CO2 flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively. Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis of achieved results a strong positive relationship between gm and gs was found out indicating a co-regulation and mutual independence of the relationship under the drought conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation rate was progressively increased, but to a less extent in comparison to gm, while a non-stomatal limitation became more dominant due to the prolonged drought. Mesophyll conductance (gm) seems to be a suitable mechanism and parameter for selection of improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus explaining their better photosynthetic performance at a whole plant level during periods of drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976106PMC
http://dx.doi.org/10.3389/fpls.2016.01111DOI Listing

Publication Analysis

Top Keywords

mesophyll conductance
12
progressive drought
12
drought
8
drought stress
8
limitation co2
8
co2 flow
8
drought conditions
8
co2 assimilation
8
assimilation rate
8
co2
5

Similar Publications

Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.

View Article and Find Full Text PDF

Chloroplast arrangement in finger millet under low-temperature conditions.

Biochim Biophys Acta Gen Subj

January 2025

RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.

Background: Finger millet, a C plant with mesophyll and bundle sheath cells, has been cultivated at high altitudes in the Himalayas owing to its adaptability to stressful environments. Under environmental stresses such as high light and drought, finger millet mesophyll chloroplasts move toward the bundle sheath, a phenomenon known as aggregative arrangement.

Methods: To investigate the effect of low temperatures on mesophyll chloroplast arrangement in finger millet, we conducted microscopic observations and photochemical measurements using leaves treated at different temperatures in light or darkness, with or without pharmacological inhibitors.

View Article and Find Full Text PDF

In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut.

View Article and Find Full Text PDF

Colchicine-Induced Tetraploidy in Protocorms of Lodd. ex Lindl. and Paxton. and Its Identification.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

(Orchidaceae) boasts high ornamental value due to its pleasant aroma, foxtail spike, and elegant floral morphology. Inducing to become tetraploid enhances horticultural traits and facilitates fertile intergeneric hybrids through crosses with other market-available tetraploid species. The experimental design involved the application of colchicine at varying concentrations-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!