The localization on the calf estrogen receptor of the binding domain for B36 (an IgM antibody which prevents and reverses the effects of receptor activation) has been studied by means of controlled proteolysis of the receptor-estradiol complex using trypsin, chymotrypsin, and papain. We successively determined for intact and proteolyzed receptor-estradiol complex (i) the abilities of estradiol-binding species to aggregate in low salt medium, to bind to nonspecific DNA absorbed onto cellulose, and to interact with B36 antibody in sucrose gradients; (ii) the hydrodynamic properties of estradiol-binding species, by gel permeation chromatography and sucrose gradient centrifugation in high salt media and (iii) the molecular weights of B36-reactive species, by immunoblot analysis. Three tryptic receptor fragments of Mr 36,000, 34,000, and 33,000 and two chymotryptic fragments of Mr 36,000 and 33,000 included both the hormone- and B36-binding domains but did not interact with DNA, whereas at least two receptor fragments resulting from the action of chymotrypsin and papain bound estradiol with high affinity but interacted neither with DNA nor with B36. Taking into account these results and assuming that structure of the calf estrogen receptor is similar to those of sequenced estrogen receptors (which show a highly conserved organization with considerable homologies in the functional domains), we propose that the B36-binding domain is located either between the DNA- and hormone-binding domains (model I) or at the C-terminal end of the estrogen receptor (model II). The regions that include the main proteolytic cleavage sites of the receptor are also specified, and the abilities of the two models of the calf estrogen receptor to account for the effect of B36 on receptor activation are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-4731(89)90452-4DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
20
calf estrogen
16
receptor activation
12
receptor
11
receptor binding
8
binding domain
8
receptor-estradiol complex
8
chymotrypsin papain
8
estradiol-binding species
8
receptor fragments
8

Similar Publications

Comprehensive three-dimensional microCT and signaling analysis reveal the teratogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on craniofacial bone development in mice.

Ecotoxicol Environ Saf

January 2025

Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.

View Article and Find Full Text PDF

Development of PROTACs targeting estrogen receptor: an emerging technique for combating endocrine resistance.

RSC Med Chem

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University Wuhan 430062 China

Despite the success of endocrine therapies in treating ER-positive breast cancer, the development of resistance remains a significant challenge. Estrogen receptor targeting proteolysis-targeting chimeras (ER PROTACs) offer a unique approach by harnessing the ubiquitin-proteasome system to degrade ER, potentially bypassing resistance mechanisms. In this review, we present the drug design, efficacy and early clinical trials of these ER PROTACs.

View Article and Find Full Text PDF

Background: To date, the overall survival (OS) of hormone receptor-positive advanced breast cancer (ABC) treated with palbociclib has not been reported in Chinese patients. It still remains unclear what kind of patients may benefit in OS from palbociclib treatment and what the optimal sequential antineoplastic regimen is for those progressing on palbociclib. Therefore, we aimed to investigate the OS outcome of ABC patients receiving palbociclib, establish a predictive model to identify the potential candidates who may benefit from palbociclib and explore the ideal subsequent treatment strategy after palbociclib.

View Article and Find Full Text PDF

Objective: The present study was designed to comprehensively analyze the expression profiles of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), estrogen-related receptor-α (ERRα), estrogen receptor-β (ERβ), interleukin-6 (IL-6), cysteinyl-aspartic acid-specific protease-3 (caspase-3), and cysteinyl-aspartic acid-specific protease-9 (caspase-9) in endometriosis tissues. It also aimed to elucidate the hitherto unclarified role of PGC-1α in the processes of proliferation, apoptosis, and gene expression regulation of human endometrial stromal cells, thereby providing novel insights and identifying potential molecular targets for advancing endometriosis treatment modalities.

Methods: A total of 49 ectopic endometrial tissue samples and 50 normal endometrial tissue samples were meticulously collected from patients who underwent gynecological surgeries in the People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine in Fuzhou, China, between January 2022 and January 2023.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disorder marked by dopaminergic neuron degeneration in the substantia nigra. Emerging evidence suggests vitamin D3 (VD) plays a therapeutic role in PD, but its precise molecular mechanisms remain unclear. This study employed network pharmacology and bioinformatics to identify VD's hub targets and related pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!