Purpose: Scoring systems have been devised to predict outcomes of percutaneous nephrolithotomy (PCNL). CROES nephrolithometry nomogram (CNN) is the latest tool devised to predict stone-free rate (SFR). We aim to compare predictive accuracy of CNN against Guy stone score (GSS) for SFR and postoperative outcomes.
Materials And Methods: Between January 2013 and December 2015, 313 patients undergoing PCNL were analyzed for predictive accuracy of GSS, CNN, and stone burden (SB) for SFR, complications, operation time (OT), and length of hospitalization (LOH). We further stratified patients into risk groups based on CNN and GSS.
Results: Mean ± standard deviation (SD) SB was 298.8 ± 235.75 mm. SB, GSS, and CNN (area under curve [AUC]: 0.662, 0.660, 0.673) were found to be predictors of SFR. However, predictability for complications was not as good (AUC: SB 0.583, GSS 0.554, CNN 0.580). Single implicated calix (Adj. OR 3.644; p = 0.027), absence of staghorn calculus (Adj. OR 3.091; p = 0.044), single stone (Adj. OR 3.855; p = 0.002), and single puncture (Adj. OR 2.309; p = 0.048) significantly predicted SFR on multivariate analysis. Charlson comorbidity index (CCI; p = 0.020) and staghorn calculus (p = 0.002) were independent predictors for complications on linear regression. SB and GSS independently predicted OT on multivariate analysis. SB and complications significantly predicted LOH, while GSS and CNN did not predict LOH. CNN offered better risk stratification for residual stones than GSS.
Conclusion: CNN and GSS have good preoperative predictive accuracy for SFR. Number of implicated calices may affect SFR, and CCI affects complications. Studies should incorporate these factors in scoring systems and assess if predictability of PCNL outcomes improves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/end.2016.0340 | DOI Listing |
Psychiatry Clin Psychopharmacol
December 2024
The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Background: This study aimed to investigate miRNAs and upstream regulatory transcription factors involved in schizophrenia (SZ) pathogenesis.
Methods: Differential expression of miRNAs and genes in SZ patients was investigated utilizing the gene expression omnibus dataset, gene ontology annotations, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Real-time quantitative polymerase chain reaction experiments were conducted to validate the predictive screening of regulatory genes in peripheral blood samples from 20 SZ patients and 20 healthy controls.
Sensors (Basel)
December 2024
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China.
To address the limitations of existing deep learning-based algorithms in detecting surface defects on brake pipe ends, a novel lightweight detection algorithm, FP-YOLOv8, is proposed. This algorithm is developed based on the YOLOv8n framework with the aim of improving accuracy and model lightweight design. First, the C2f_GhostV2 module has been designed to replace the original C2f module.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA.
Freezing of wind turbines causes loss of wind-generated power. Forecasting or prediction of icing on wind turbine blades based on SCADA sensor data allows taking appropriate actions before icing occurs. This paper presents a newly developed deep learning network model named PCTG (Parallel CNN-TCN GRU) for the purpose of high-accuracy and long-term prediction of icing on wind turbine blades.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Computer Science, Polish-Japanese Academy of Information Technology, 86 Koszykowa Street, 02-008 Warsaw, Poland.
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early detection is crucial for effective intervention strategies, this study investigates whether the structural analysis of selected brain regions, including volumes and their spatial relationships obtained from regular T1-weighted MRI scans ( = 168, PPMI database), can model stages of PD using standard machine learning (ML) techniques. Thus, diverse ML models, including Logistic Regression, Random Forest, Support Vector Classifier, and Rough Sets, were trained and evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!