The widespread application of surface-enhanced Raman scattering (SERS) would benefit from simple and scalable self-assembly procedures for the realization of plasmonic arrays with a high density of electromagnetic hot-spots. To this aim, the exploitation of iron-doped silver nanoparticles (NPs) synthesized by laser ablation of a bulk bimetallic iron-silver target immersed in ethanol is described. The use of laser ablation in liquid is key to achieving bimetallic NPs in one step with a clean surface available for functionalization with the desired thiolated molecules. These iron-silver NPs show SERS performances, a ready response to external magnetic fields and complete flexibility in surface coating. All these characteristics were used for the magnetic assembly of plasmonic arrays which served as SERS substrates for the identification of molecules of analytical interest. The magnetic assembly of NPs allowed a 28-fold increase in the SERS signal of analytes compared to not-assembled NPs. The versatility of substrate preparation and the SERS performances were investigated as a function of NPs surface coating among different thiolated ligands. These results show a simple procedure to obtain magnetically assembled regenerable plasmonic arrays for repeated SERS investigation of different samples, and it can be of inspiration for the realization of other self-assembled and reconfigurable magnetic-plasmonic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201600651 | DOI Listing |
Transl Vis Sci Technol
January 2025
Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Purpose: Geographic atrophy (GA), an advanced form of dry age-related macular degeneration (AMD), has limited treatment options. This study introduces a novel mouse model featuring an expanding GA patch that can be used to test mechanisms and therapeutics.
Methods: C57Bl/6J male mice (n = 96) aged 9-10 weeks received an intraperitoneal (IP) injection of 20 mg/kg sodium iodate (NaIO3).
Nanomaterials (Basel)
December 2024
Department of Materials Science, Montanuniversität Leoben, 8700 Leoben, Austria.
Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause specimen fracture during APT, while impurities may introduce additional peaks in the mass spectra.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates.
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
The global increase in urolithiasis prevalence has led to a shift towards minimally invasive procedures, such as retrograde intrarenal surgery, supported by advancements in laser technologies for lithotripsy. Pulsed lasers, particularly the holmium YAG and the newer thulium fiber laser, have significantly transformed the management of upper urinary tract stones. However, the use of high-power lasers in these procedures introduces risks of heat-related injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!