Cation diffusion facilitators (CDF) are highly conserved, metal ion efflux transporters that maintain divalent transition metal cation homeostasis. Most CDF proteins contain two domains, the cation transporting transmembrane domain and the regulatory cytoplasmic C-terminal domain (CTD). MamM is a magnetosome-associated CDF protein essential for the biomineralization of magnetic iron-oxide particles in magnetotactic bacteria. To investigate the structure-function relationship of CDF cytoplasmic domains, we characterized a MamM M250P mutation that is synonymous with the disease-related mutation L349P of the human CDF protein ZnT-10. Our results show that the M250P exchange in MamM causes severe structural changes in its CTD resulting in abnormal reduced function. Our in vivo, in vitro and in silico studies indicate that the CTD fold is critical for CDF proteins' proper function and support the previously suggested role of the CDF cytoplasmic domain as a CDF regulatory element. Based on our results, we also suggest a mechanism for the effects of the ZnT-10 L349P mutation in human.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994047 | PMC |
http://dx.doi.org/10.1038/srep31933 | DOI Listing |
Molecules
January 2025
Department of General and Biological Chemistry, Astana Medical University, 010000 Astana, Kazakhstan.
The physicochemical and adsorption properties of granular sorbents based on natural bentonite and modified sorbents based on it have been studied. It was found that modification of natural bentonite with iron (III) polyhydroxocations (mod. 1_Fe_5 GA) and aluminum (III) (mod.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China. Electronic address:
MoCT MXenes have great potential for multifunctional energy storage applications because of their outstanding electrical conductivity, superior cycling stability, and high optical transmittance. In this study, we fabricate MoCT film electrodes (referred to as MoC) on fluorine-doped tin oxide (FTO) substrates using the layer-by-layer (LbL) self-assembly technique. To improve the energy-storage performance of MoCT film electrodes, we develop a convenient electrochemical activation process to prepare in situ oxidized MoCT/MoO film electrodes (referred to as EA-MoC).
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China.
Building 2D/3D heterojunction is a promising approach to passivate surface defects and improve the stability of perovskite solar cells (PSCs). Developing effective methods to build high-quality 2D/3D heterojunction is in demand. The formation of 2D/3D heterojunction involves both the diffusion of 2D spacer molecules and phase transition from 3D to 2D structure.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
We developed a systematic polarizable force field for molten trivalent rare-earth chlorides, from lanthanum to europium, based on first-principle calculations. The proposed model was employed to investigate the local structure and physicochemical properties of pure molten salts and their mixtures with sodium chloride. We computed densities, heat capacities, surface tensions, viscosities, and diffusion coefficients and disclosed their evolution along the lanthanide series, filling the gaps for poorly studied elements, such as promethium and europium.
View Article and Find Full Text PDFLangmuir
January 2025
College of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!