Positron emission tomography (PET) is a means of imaging the β-activity produced by the radiation field in ion beam therapy and therefore for treatment verification. Prompt γ-rays that are emitted during beam application challenge the detectors and electronics of PET systems, since those are designed for low and medium count rates. Typical PET detectors operated according to a modified Anger principle suffer from multiple events at high rates. Therefore, in-beam PET systems using such detectors rely on a synchronization of beam status and measurement to reject deteriorated data. In this work, a method for pile-up rejection is applied to conventional Anger logic block detectors. It allows for an in-beam data acquisition without further synchronization. Though cyclotrons produce a continuous wave beam, the radiation field shaping technique introduces breaks in the application. Time regimes mimicking synchrotrons as well as cyclotron based ones using double-scattering or pencil beam scanning field shaping at dose rates of 0.5, 1.0 and 2.0Gy/min were investigated. Two types of inhomogeneous phantoms were imaged. The first one simulates cavity structures, the other one mimics a static lung irradiation. It could be shown that, depending on the dose rate and the beam time structure, in-beam measurement including a few seconds decay time only, yield images which revealed all inhomogeneities in the phantoms. This technique can be the basis for the development of an in-beam PET system with traditional detectors and off-the-shelf electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zemedi.2016.07.003 | DOI Listing |
Phys Med Biol
January 2025
The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
. In-beam positron emission tomography (PET) has important development prospects in real-time monitoring of proton therapy. However, in the beam-on operation, the high bursts of radiation events pose challenges to the performance of the PET system.
View Article and Find Full Text PDFPhys Med Biol
September 2024
Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
.N, having a half-life of 11 ms, is a highly effective positron emitter that can potentially provide near real-time feedback in proton therapy. There is currently no framework for comparing and validating positron emission imaging ofN.
View Article and Find Full Text PDFPhys Med
September 2024
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy; Università di Pisa, Dipartimento di Fisica, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy.
Purpose: Carbon ion therapy treatments can be monitored non-invasively with in-beam Positron Emission Tomography (PET). At CNAO the INSIDE in-beam PET scanner has been used in a clinical trial (NCT03662373) to monitor cancer treatments with proton and carbon therapy. In this work we present the analysis results of carbon therapy data, acquired during the first phase of the clinical trial, analyzing data of nine patients treated at CNAO for various malignant tumors in the head-and-neck region.
View Article and Find Full Text PDFPhys Med Biol
June 2024
The Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
. In-beam positron emission tomography (PET) is a promising technology for real-time monitoring of proton therapy. Random coincidences between prompt radiation events and positron annihilation photon pairs can deteriorate imaging quality during beam-on operation.
View Article and Find Full Text PDFPhys Med
April 2024
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo Bruno Pontecorvo 3, Pisa, 56127, Italy; Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, Pisa, 56127, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!