The MHC class II (MHCII) processing pathway presents peptides derived from exogenous or membrane-bound proteins to CD4+ T cells. Several studies have shown that glycopeptides are necessary to modulate CD4+ T cell recognition, though glycopeptide structures in these cases are generally unknown. Here, we present a total of 93 glycopeptides from three melanoma cell lines and one matched EBV-transformed line with most found only in the melanoma cell lines. The glycosylation we detected was diverse and comprised 17 different glycoforms. We then used molecular modeling to demonstrate that complex glycopeptides are capable of binding the MHC and may interact with complementarity determining regions. Finally, we present the first evidence of disulfide-bonded peptides presented by MHCII. This is the first large scale study to sequence glyco- and disulfide bonded MHCII peptides from the surface of cancer cells and could represent a novel avenue of tumor activation and/or immunoevasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5218890PMC
http://dx.doi.org/10.1021/acs.jproteome.6b00496DOI Listing

Publication Analysis

Top Keywords

peptides presented
8
mhc class
8
processing pathway
8
melanoma cell
8
cell lines
8
identification characterization
4
characterization complex
4
complex glycosylated
4
peptides
4
glycosylated peptides
4

Similar Publications

Peptide Crosslinking by a Class of Plant Copper Enzymes.

Trends Chem

November 2024

Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States.

BURP domain peptide cyclases, or BpCs (an abbreviation we recommend in this opinion), are an emerging class of copper enzymes which catalyze the oxidative macrocyclization of peptides in plants. A close examination of their novel protein fold, along with the unique dicopper active site that meticulously controls crosslinking within peptides, highlights how nature exploits intricate mechanistic strategies to achieve diverse functionalities. Here, we summarize recent discoveries regarding the sequence, structure, function, and proposed chemistry of BpCs.

View Article and Find Full Text PDF

Systemic lupus erythematosus and pulmonary tuberculosis in a patient developing acute-onset type 1 diabetes.

Diabetol Int

January 2025

Department of Endocrinology and Diabetes, NTT Medical Center Tokyo, 141-86255-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo Japan.

A 73-year-old Japanese woman was admitted to our hospital with anorexia, weight loss, and fever. A few weeks prior to admission, she became aware of anorexia. She was leukopenic, complement-depleted, and positive for antinuclear antibodies and anti-double stranded DNA antibodies.

View Article and Find Full Text PDF

From pain to meningitis: bacteria hijack nociceptors to promote meningitis.

Front Immunol

January 2025

National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Bacterial meningitis is a severe and life-threatening infection of the central nervous system (CNS), primarily caused by and . This condition carries a high risk of mortality and severe neurological sequelae, such as cognitive impairment and epilepsy. Pain, a central feature of meningitis, results from the activation of nociceptor sensory neurons by inflammatory mediators or bacterial toxins.

View Article and Find Full Text PDF

Upcycling of Enzymatically Recovered Amino Acids from Textile Waste Blends: Approaches for Production of Valuable Second-Generation Bioproducts.

ACS Sustain Resour Manag

January 2025

Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.

Tremendous quantities of textile waste generated and primarily landfilled annually represent a huge risk of contaminating the environment, together with loss of valuable resources. Especially, blended fabrics further pose a challenge for recycling and valorization strategies, while enzymatic hydrolysis offers a highly specific and environmentally friendly solution. In this study, we demonstrate that proteases specifically hydrolyze the wool components in blends with polyester, allowing recovery of pure polyester fibers as well as amino acids and peptides as platform molecules for further valorization.

View Article and Find Full Text PDF

Background Tuberculosis (TB) remains a major cause of global morbidity and mortality. Efforts to control TB are hampered by the lengthy and cumbersome treatment required to eradicate the infection. Bacterial persistence during exposure to bactericidal antibiotics is at least partially mediated by the bacterial stringent response enzyme, Rel .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!