Collective migration and cell jamming in asthma, cancer and development.

J Cell Sci

Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA 02115, USA Brigham and Women's Hospital, Harvard Medical School, Department of Medicine, Boston, MA 02115, USA.

Published: September 2016

Collective cellular migration within the epithelial layer impacts upon development, wound healing and cancer invasion, but remains poorly understood. Prevailing conceptual frameworks tend to focus on the isolated role of each particular underlying factor - taken one at a time or at most a few at a time - and thus might not be tailored to describe a cellular collective that embodies a wide palette of physical and molecular interactions that are both strong and complex. To bridge this gap, we shift the spotlight to the emerging concept of cell jamming, which points to only a small set of parameters that govern when a cellular collective might jam and rigidify like a solid, or instead unjam and flow like a fluid. As gateways to cellular migration, the unjamming transition (UJT) and the epithelial-to-mesenchymal transition (EMT) share certain superficial similarities, but their congruence - or lack thereof - remains unclear. In this Commentary, we discuss aspects of cell jamming, its established role in human epithelial cell layers derived from the airways of non-asthmatic and asthmatic donors, and its speculative but emerging roles in development and cancer cell invasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047682PMC
http://dx.doi.org/10.1242/jcs.187922DOI Listing

Publication Analysis

Top Keywords

cell jamming
12
cellular migration
8
cellular collective
8
cell
5
collective
4
collective migration
4
migration cell
4
jamming asthma
4
asthma cancer
4
cancer development
4

Similar Publications

Controlling Microparticle Aspect Ratio via Photolithography for Injectable Granular Hydrogel Formation and Cell Delivery.

ACS Biomater Sci Eng

January 2025

Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907-2050, Indiana, United States.

Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels.

View Article and Find Full Text PDF

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Based on the analysis of the structures of robots and electronics developed so far, it should be noted that a majority of them need a reservoir for electrical energy storage. Unfortunately, most off-the-shelf devices commercially available nowadays are based on rigid parts that heavily limit the possibilities of incorporating such products into soft robots and wearable electronics. To address these issues, a new type of flexible structure for electrical energy storage, which consists of small battery cells connected by liquid metal paths, was proposed.

View Article and Find Full Text PDF

Transitions between cooperative and crowding-dominated collective motion in non-jammed MDCK monolayers.

Cells Dev

December 2024

Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32605, United States of America; Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32605, United States of America; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32605, United States of America. Electronic address:

Transitions between solid-like and fluid-like states in living tissues have been found in steps of embryonic development and in stages of disease progression. Our current understanding of these transitions has been guided by experimental and theoretical investigations focused on how motion becomes arrested with increased mechanical coupling between cells, typically as a function of packing density or cell cohesiveness. However, cells actively respond to externally applied forces by contracting after a time delay, so it is possible that at some packing densities or levels of cell cohesiveness, mechanical coupling stimulates cell motion instead of suppressing it.

View Article and Find Full Text PDF

Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!