Toward RNA Repair of Diamond Blackfan Anemia Hematopoietic Stem Cells.

Hum Gene Ther

Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institute for Medical Research, Manhasset, New York.

Published: October 2016

Diamond blackfan anemia (DBA) is a well-known inherited bone marrow failure syndrome mostly caused by mutations in ribosomal protein (RP) genes but also rarely in the hematopoietic transcription factor gene, GATA1, or TSR2, a ribosomal protein (Rps26) chaperone gene. About 25% of patients have heterozygous mutations in the RPS19 gene, which leads to haploinsufficiency of Rps19 protein in most cases. However, some RPS19 missense mutations appear to act in a dominant negative fashion. DBA typically leads to a hypoplastic anemia that becomes apparent during the first year of life, and standard treatment includes steroids or red blood cell transfusions, each modality having attendant side effects. The only curative therapy is allogeneic stem-cell transplantation, but this option is limited to patients with a histocompatible donor. DBA-mutant embryonic, induced pluripotent, and hematopoietic stem cells all exhibit growth abnormalities that can be corrected by DNA gene transfer, suggesting the possibility of ex vivo autologous gene therapy. The authors have been interested in the application of spliceosome-mediated mRNA trans-splicing (SMaRT) technology to RNA repair of DBA stem cells. Compared with gene replacement or other RNA re-programming approaches, SMaRT has several potential advantages. First, delivery of the entire normal cDNA is unnecessary, thus minimizing the overall size of the construct for packaging into a viral delivery vector. Second, RNA transcription of the corrected gene relies on the cell's endogenous transcriptional, processing, and regulatory machinery, thereby ensuring faithful and contextual expression. Third, RNA trans-splicing employs the endogenous spliceosome enzymatic machinery present in nearly all cells. Fourth, RNA trans-splicing converts mutant transcripts into therapeutically useful mRNA, and thus may be capable of treating disorders caused by dominant negative mutations. This review critically assesses prospects for both gene and RNA repair in DBA stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2016.081DOI Listing

Publication Analysis

Top Keywords

stem cells
16
rna repair
12
diamond blackfan
8
blackfan anemia
8
hematopoietic stem
8
ribosomal protein
8
gene
8
dominant negative
8
repair dba
8
dba stem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!