Mitochondrial DNA exhibits resistance to induced point and deletion mutations.

Nucleic Acids Res

Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA

Published: October 2016

The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062989PMC
http://dx.doi.org/10.1093/nar/gkw716DOI Listing

Publication Analysis

Top Keywords

point deletion
12
mtdna mutations
12
mtdna
9
mitochondrial dna
8
mutations
8
deletion mutations
8
mtdna damage
8
mitochondrial
5
mutation
5
dna exhibits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!